Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.44.3822DOI Listing

Publication Analysis

Top Keywords

nonequilibrium electron
4
electron transport
4
transport absorbing
4
absorbing boundaries
4
nonequilibrium
1
transport
1
absorbing
1
boundaries
1

Similar Publications

Molecular conductance calculations of single-molecule junctions using projection-based density functional embedding.

J Chem Phys

January 2025

Laboratory of Theoretical Chemistry, Institute of Chemistry, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/A, Budapest H-1117, Hungary.

Single-Molecule Junctions (SMJs) are key platforms for the exploration of electron transport at the molecular scale. In this study, we present a method that employs different exchange-correlation density functionals for the molecule and the lead domains in an SMJ, enabling the selection of the optimal one for each part. This is accomplished using a formally exact projection-based density-functional theory (DFT-in-DFT) embedding technique combined with the non-equilibrium Green's function method to predict zero-bias conductance.

View Article and Find Full Text PDF

Nanoporous graphene (NPG), laterally bonded carbon nanoribbons, is a promising platform for controlling coherent electron propagation in the nanoscale. However, for its successful device integration NPG should ideally be on a substrate that preserves or enhances its anisotropic transport properties. Here, using an atomistic tight-binding model combined with nonequilibrium Green's functions, we study NPG on graphene and show that their electronic coupling is modulated as a function of the interlayer twist angle.

View Article and Find Full Text PDF

In the study of GaN/AlGaN heterostructure thermal transport, the interference of strain on carriers cannot be ignored. Although existing research has mainly focused on the intrinsic electronic and phonon behavior of the materials, there is a lack of studies on the transport characteristics of the electron-phonon coupling in heterostructures under strain control. This research comprehensively applies first-principles calculations and the Boltzmann transport equation simulation method to deeply analyze the thermal transport mechanism of the GaN/AlGaN heterojunction considering in-plane strain, with particular attention to the regulatory role of electron-phonon coupling on thermal transport.

View Article and Find Full Text PDF

Magnetoreception, the ability to sense magnetic fields, is widespread in animals but remains poorly understood. The leading model links this ability in migratory birds to the photo-activation of the protein cryptochrome. Magnetic information is thought to induce structural changes in cryptochrome via a transient radical pair intermediate.

View Article and Find Full Text PDF

Among expanding discoveries of quantum phases in moiré superlattices, correlated insulators stand out as both the most stable and most commonly observed. Despite the central importance of these states in moiré physics, little is known about their underlying nature. Here, we use pump-probe spectroscopy to show distinct time-domain signatures of correlated insulators at fillings of one (ν = -1) and two (ν = -2) holes per moiré unit cell in the angle-aligned WSe/WS system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!