Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.44.r1427 | DOI Listing |
J Chem Theory Comput
January 2025
School of Computing and Information Technology, The University of Melbourne, Melbourne, Victoria 3052, Australia.
In Self-Consistent Field (SCF) calculations, the choice of initial guess plays a key role in determining the time-to-solution by influencing the number of iterations required for convergence. However, focusing solely on reducing iterations may overlook the computational cost associated with improving the accuracy of initial guesses. This study critically evaluates the effectiveness of two initial guess methods─basis set projection (BSP) and many-body expansion (MBE) on Hartree-Fock and hybrid Density Functional Theory (B3LYP and MN15) methods.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry, University of California, Berkeley, California 94720, United States.
Energy decomposition analysis (EDA) based on density functional theory (DFT) and self-consistent field (SCF) calculations has become widely used for understanding intermolecular interactions. This work reports a new approach to EDA for post-SCF wave functions based on closed-shell restricted second-order Mo̷ller-Plesset (MP2) together with an efficient implementation that generalizes the successful SCF-level second-generation absolutely localized molecular orbital EDA approach, ALMO-EDA-II, and improves upon MP2 ALMO-EDA-I. The new MP2 ALMO-EDA-II provides distinct energy contributions for a frozen interaction energy containing permanent electrostatics and Pauli repulsions, polarized energy-yielding induced electrostatics, dispersion-corrected energy, and the fully relaxed energy, which describes charge transfer.
View Article and Find Full Text PDFJ Phys Chem Lett
January 2025
Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Korea.
Practical density-corrected density functional theory (DC-DFT) calculations rely on Hartree-Fock (HF) densities, which can be computationally expensive for systems with over a hundred atoms. We extend the applicability of HF-DFT using the dual-basis method, where the density matrix from a smaller basis set is used to estimate the HF solution on a larger basis set. Benchmarks on many systems, including the GMTKN55 database for main-group chemistry, and the L7 and S6L data sets for large molecular systems demonstrate the efficacy of our approach.
View Article and Find Full Text PDFJ Mol Model
January 2025
Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
Context: Inspired by the newly synthesized endohedral fullerene T CH@C (1) and based on extensive density functional theory calculations, we predict herein a series of endohedral borafullerenes C CH@BC (4), T BH@BC (5), C HO@BC (6), C NH@BC (7), and T C@BC (8) which possess a BC (3) shell isovalent with C, with the neutral D C@BC (9) obtained from C@BC (8) by symmetric C─B substitutions. Detailed adaptive natural density partitioning (AdNDP) bonding analyses and iso-chemical shielding surfaces (ICSSs) calculations indicate that these core-shell species are spherically aromatic in nature, rendering high stability to the systems. More interestingly, based on the calculated effective donor-acceptor interaction between LP(O) → LV(B@BC) in HO@BC (6), we propose the concept of boron bond (BB) in chemistry which is defined as the in-phase orbital overlap between an electronegative atom A as lone-pair (LP) donor and an electron-deficient boron atom with a lone vacant (LV) orbital as LP acceptor.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, DAV College, Sector-10, Chandigarh 160011,India.
This study investigates solute-solvent interactions in ternary systems consisting of lithium trifluoromethanesulfonate (LiOTf) as the solute and tetraethylene glycol dimethyl ether (TEGDME) and 1,2-dimethoxyethane (DME) as solvents over a range of temperatures (293.15-313.15 K).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!