Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.43.1906 | DOI Listing |
Nat Commun
January 2025
Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
Gypsum (CaSO·2HO) plays a critical role in numerous natural and industrial processes. Nevertheless, the underlying mechanisms governing the formation of gypsum crystals on surfaces with diverse chemical properties remain poorly understood due to a lack of sufficient temporal-spatial resolution. Herein, we use in situ microscopy to investigate the real-time gypsum nucleation on self-assembled monolayers (SAMs) terminated with -CH, -hybrid (a combination of NH and COOH), -COOH, -SO, -NH, and -OH functional groups.
View Article and Find Full Text PDFAtomic-scale changes can significantly impact heterogeneous catalysis, yet their atomic mechanisms are challenging to establish using conventional analysis methods. By using identical location scanning transmission electron microscopy (IL-STEM), which provides quantitative information at the single-particle level, we investigated the mechanisms of atomic evolution of Ru nanoclusters during the ammonia decomposition reaction. Nanometre-sized disordered nanoclusters transform into truncated nano-pyramids with stepped edges, leading to increased hydrogen production from ammonia.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Pharmacy, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; Center for Biopharmaceuticals and Biobarriers in Drug Delivery, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark. Electronic address:
Ion-protein interactions regulate biological processes and are the basis of key strategies of modulating protein phase diagrams and stability in drug development. Here, we report the mechanisms by which H-bonds and electrostatic interactions in ion-protein systems determine phase separation and amyloid formation. Using microscopy, small-angle X-ray scattering, circular dichroism and atomistic molecular dynamics (MD) simulations, we found that anions specifically interacting with insulin induced phase separation by neutralising the protein charge and forming H-bond bridges between insulin molecules.
View Article and Find Full Text PDFLangmuir
January 2025
Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India.
Understanding the droplet coalescence/merging is vital for many areas of microfluidics such as biochemical reactors, drug delivery, inkjet printing, oil recovery, etc. In the present study, we carried out numerical simulations of two magnetic droplets suspended in a nonmagnetic fluid matrix and coalescing under the influence of an external magnetic field. We observed that the applied magnetic field played a key role in the merging dynamics of the magnetic droplets.
View Article and Find Full Text PDFToxicon
December 2024
Department of Pathology, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, S.P., Brazil; Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (ICAQF-UNIFESP), Diadema, S.P., Brazil. Electronic address:
L-Mimosine is the main active component of the plant Leucaena leucocephala. Due to its metal-chelating mechanism, it interacts with various metabolic pathways in living organisms, making it a potential pharmacological target, although it also leads to toxicity. The present study aimed to investigate the transplacental passage of L-mimosine and its effects on embryofetal development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!