Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.43.6386 | DOI Listing |
Phys Rev Lett
December 2024
Columbia University, Department of Physics, New York, New York 10027, USA.
We report on the optical polarizability of microwave-shielded ultracold NaCs molecules in an optical dipole trap. While dressing a pair of rotational states with a microwave field, we observe a marked dependence of the optical polarizability on the intensity and detuning of the dressing field. To precisely characterize differential energy shifts between dressed rotational states, we establish dressed-state spectroscopy.
View Article and Find Full Text PDFJ Chem Phys
January 2025
Department of Chemistry, University of Washington, Seattle, Washington 98185, USA.
We derive a new expression for the strength of a hydrogen bond (VHB) in terms of the elongation of the covalent bond of the donor fragment participating in the hydrogen bond (ΔrHB) and the intermolecular coordinates R (separation between the heavy atoms) and θ (deviation of the hydrogen bond from linearity). The expression includes components describing the covalent D-H bond of the hydrogen bond donor via a Morse potential, the Pauli repulsion, and electrostatic interactions between the constituent fragments using a linear expansion of their dipole moment and a quadratic expansion of their polarizability tensor. We fitted the parameters of the model using ab initio electronic structure results for six hydrogen bonded dimers, namely, NH3-NH3, H2O-H2O, HF-HF, H2O-NH3, HF-H2O, and HF-NH3, and validated its performance for extended parts of their potential energy surfaces, resulting in a mean absolute error ranging from 0.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
Institute of Applied Analysis and Numerical Simulation, University of Stuttgart, Pfaffenwaldring 57, Stuttgart, 70569, Germany.
In this study, we report a comprehensive calculation of the static dipole polarizabilities of group 12 elements using the finite-field approach combined with the relativistic coupled-cluster method, including single, double, and perturbative triple excitations. Relativistic effects are systematically investigated, including scalar-relativistic, spin-orbit coupling (SOC), and fully relativistic Dirac-Coulomb contributions. The final recommended polarizability values are 37.
View Article and Find Full Text PDFMolecular junctions (MJs) are celebrated nanoelectronic devices for mimicking conventional electronic functions, including rectifiers, sensors, wires, switches, transistors, negative differential resistance, and memory, following an understanding of charge transport mechanisms. However, capacitive nanoscale molecular junctions are rarely seen. The present work describes electrochemically (E-Chem) grown covalently attached molecular thin films of 10, 14.
View Article and Find Full Text PDFSci Rep
January 2025
DIMES Department, University of Calabria, Rende, 87036, Italy.
Despite their widespread adoption, particle-scale simulation methods, such as the Discrete Element Method (DEM), for electrically charged particles in several natural processes and industrial transformations do not include realistic polarization effects. At close distances, these can dominate the particle motion and are impossible to predict by the commonly adopted Coulomb point-charge approximation. Sophisticated mathematical tools can account for uneven charge distributions, predicting an attractive force between a charged particle and a neutral particle or possible attraction between two like-charged particles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!