Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.42.5132 | DOI Listing |
Phys Chem Chem Phys
January 2025
Univ Rennes, CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, F-35000 Rennes, France.
An accurate potential energy model, explicitly designed for studying scattering and treating the spin-orbit and nonadiabatic couplings on an equal footing, is proposed for the S + Ar system. The model is based on the Effective Relativistic Coupling by Asymptotic Representation (ERCAR) approach, building the geometry dependence of the spin-orbit interaction a diabatisation scheme. The resulting full diabatic model is used in close-coupling calculations to compute inelastic scattering cross sections for de-excitation from the S(D) fine structure level into the P multiplet.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States.
State-to-state spin-orbit changing collisions of vibrationally excited nitric oxide (NO) with argon (Ar) were studied across a wide collision energy range from 3.5 to 11,200 cm (0.43 meV to 1.
View Article and Find Full Text PDFJ Chem Phys
November 2024
Quantum Dynamics Lab, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India.
The quantum dynamics of carbon chains through H2 and He collisions in the interstellar medium (ISM) is an important step toward accurate modeling of their abundance in non-local thermodynamic equilibrium conditions. The C5(Σg+1) molecule is the longest pure carbon chain detected in the ISM to date. While He collisions are computationally easy to perform, the collision with much more abundant H2 is both complicated and computationally demanding.
View Article and Find Full Text PDFJ Phys Chem Lett
November 2024
Department of Physics and Astronomy and Center for Simulational Physics, University of Georgia, Athens, Georgia 30602, United States.
The rovibrational level populations, and subsequent emission in various astrophysical environments, are driven by inelastic collision processes. The available rovibrational rate coefficients for water have been calculated using a number of approximations. We present a numerically exact calculation for the rovibrational quenching for all water vibrational modes due to collisions with atomic hydrogen.
View Article and Find Full Text PDFJ Chem Phys
July 2024
Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
This work theoretically studied the spectral line shape of H2O perturbed by Ar in the temperature range of 20-300 K for the pure rotational lines below 360 cm-1, as well as three lines (31, 2 ← 44, 1, 54, 2 ← 41, 3, and 73, 5 ← 60, 6) in the v2 band. In order to perform precise dynamical calculations at low collision energies, a full-dimensional long-range potential energy surface was constructed for the H2O-Ar system for the first time to correct the long range of our newly developed intermolecular potential energy surface. Subsequently, the six line-shape parameters (pressure-broadening and -shifting parameters, their speed dependencies, and the complex Dicke parameters) were determined from the generalized spectroscopic cross section by the full quantum time-independent close-coupling approach on this new potential energy surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!