Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.38.701 | DOI Listing |
Nano Lett
January 2025
Department of Materials Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531, Japan.
Optical manipulation of nanomaterials using light resonant with material excitations holds promise for enhancing optical forces and sorting particles by unique quantum properties. Conventional resonant optical sorting mainly relies on absorption and scattering forces, making it difficult to sort nanomaterials by specific emission lines. Furthermore, emission typically induces negligible force unless the material is highly anisotropic, limiting selective manipulation via emission characteristics.
View Article and Find Full Text PDFSci Adv
January 2025
Department of Biomolecular Science and Engineering, SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
Bioluminescence, an optical marker that does not require excitation by light, allows researchers to simultaneously observe multiple targets, each exhibiting a different color. Notably, the colors of the bioluminescent proteins must sufficiently vary to enable simultaneous detection. Here, we aimed to introduce a method that can be used to expand the color variation by tuning dual-acceptor bioluminescence resonance energy transfer.
View Article and Find Full Text PDFAnal Chem
January 2025
Experimental Physics III, TU Dortmund University, Dortmund 44227, Germany.
Spectral dispersion in low-field nuclear magnetic resonance (NMR) can significantly affect NMR spectral analysis, particularly when studying complex mixtures like metabolic profiling of biological samples. To address signal superposition in these spectra, we employed spectral editing with selective excitation pulses, proving it to be a suitable approach. Optimal control pulses were implemented in low-field NMR and demonstrated their capability to selectively excite and eliminate specific amino acids, such as phenylalanine and taurine, either individually or simultaneously.
View Article and Find Full Text PDFNanophotonics
January 2025
MOE Key Laboratory of Advanced Micro-Structured Materials, School of Physics Science and Engineering Tongji University, Shanghai 200092, China.
The formed optical cavity mode intensively relies on the size and geometry of optical cavity. When the defect or impurity exists inside the cavity, the formed cavity mode will be destroyed. Here, we propose a metacavity consisting of arrays of linear-crossing metamaterials (LCMMs) with abnormal dispersion, where each LCMM offers both the directional propagation channel for all incident angles and the negative refraction across its neighboring LCMMs.
View Article and Find Full Text PDFNanophotonics
January 2025
Instituto de Micro y Nanotecnología IMN-CNM, CSIC, CEI UAM+CSIC, Tres Cantos, Spain.
Acoustoplasmonic resonators, such as nanobars and crosses, are efficient acousto-optical transducers. The excitation of mechanical modes in these structures strongly depends on the spatial profile of the eigenmodes of the resonator. Using a system of two identical gold elongated bars placed on a silicon dioxide substrate, we examine how breaking mirror symmetries affects the optical and acoustic properties to provide insights in the design of acoustoplasmonic metasurfaces for nonsymmetric acousto-optical transducers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!