Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.36.2503DOI Listing

Publication Analysis

Top Keywords

destabilizing temperature
4
temperature modulation
4
modulation time-dependent
4
time-dependent convection
4
convection 3he-4he
4
3he-4he mixtures
4
destabilizing
1
modulation
1
time-dependent
1
convection
1

Similar Publications

The field of platinum chemistry is ubiquitous in the research of anticancer drugs and new OLED materials. Within the vast library of existing compounds, the majority of work focuses on complexes in the +2 and +4 oxidation states, with comparatively few examples of PtIII complexes reported without bridging ligands. PtIII complexes with metal-metal bonding can be made by mild oxidation of PtII complexes having bis(phenylpyridine) ligands.

View Article and Find Full Text PDF

Borohydrides, known for ultrahigh hydrogen density, are promising hydrogen storage materials but typically require high operating temperatures due to their strong thermodynamic stability. Here we introduce a novel light-induced destabilization mechanism for hydrogen storage reaction of borohydrides under ambient conditions photogenerated vacancies in LiH. These vacancies thermodynamically destabilize B-H bonds through the spontaneous "strong adsorption" of BH groups, which trigger an asymmetric redistribution of electrons, enabling hydrogen release at near room temperature, approximately 300 °C lower than the corresponding thermal process.

View Article and Find Full Text PDF

Counterintuitive DNA destabilization by monovalent salt at high concentrations due to overcharging.

Nat Commun

January 2025

Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.

Monovalent salts are generally believed to stabilize DNA duplex by weakening inter-strand electrostatic repulsion. Unexpectedly, our force-induced hairpin unzipping experiments and thermal melting experiments show that LiCl, NaCl, KCl, RbCl, and CsCl at concentrations beyond ~1 M destabilize DNA, RNA, and RNA-DNA duplexes. The two types of experiments yield different changes in free energy during melting, while the results that high concentration monovalent salts destabilize duplexes are common.

View Article and Find Full Text PDF

Effect of boron oxide on stability of high-ferrite Portland cement clinker in low-temperature calcination.

Sci Rep

December 2024

Huaxin Cement Co., Ltd, Huaxin Building, No. 426, Gaoxin Avenue, Donghu New Technology Development Zone, Wuhan, 430070, China.

Article Synopsis
  • The study examines the difficulties of producing high-ferrite Portland cement clinker at low temperatures and investigates boron oxide as a potential stabilizing agent.
  • Researchers found that at 1350 °C, the HFPC clinker suffers from severe pulverization due to a metastable phase, prompting the exploration of various stabilizers.
  • While multiple agents showed promise, boron oxide emerged as the best option, with a maximum recommended content of 1% to avoid destabilization that impacts early strength development, highlighting a pathway to lower energy use and emissions in cement production.
View Article and Find Full Text PDF

Laser scribed proton exchange membranes for enhanced fuel cell performance and stability.

Nat Commun

December 2024

Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.

High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!