Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.34.4120 | DOI Listing |
Se Pu
February 2025
CAS Key Laboratory of Separation Sciences for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
Chemical modifications are widely used in research fields such as quantitative proteomics and interaction analyses. Chemical-modification targets can be roughly divided into four categories, including those that integrate isotope labels for quantification purposes, probe the structures of proteins through covalent labeling or cross-linking, incorporate labels to improve the ionization or dissociation of characteristic peptides in complex mixtures, and affinity-enrich various poorly abundant protein translational modifications (PTMs). A chemical modification reaction needs to be simple and efficient for use in proteomics analysis, and should be performed without any complicated process for preparing the labeling reagent.
View Article and Find Full Text PDFACS Pharmacol Transl Sci
January 2025
Integrated Bioanalysis, Clinical Pharmacology and Safety Sciences, R&D, AstraZeneca, 121 Oyster Point Blvd, South San Francisco, California 94080, United States.
Antibody-drug conjugates (ADCs) are a promising drug modality substantially expanding in both the discovery space and clinical development. Assessing the biotransformation of ADCs and is important in understanding their stability and pharmacokinetic properties. We previously reported biotransformation pathways for the anti-B7H4 topoisomerase I inhibitor ADC, AZD8205, puxitatug samrotecan, that underpin its structural stability using an intact protein liquid chromatography-high resolution mass spectrometry (LC-HRMS) approach.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States.
We report a study of internal covalent cross-linking with photolytically generated diarylnitrile imines of N-terminal arginine, lysine, and histidine residues in peptide conjugates. Conjugates in which a 4-(2-phenyltetrazol-5-yl)benzoyl group was attached to C-terminal lysine, that we call RAAA--K, KAAA--K, and HAAA--K, were ionized by electrospray and subjected to UV photodissociation (UVPD) at 213 nm. UVPD triggered loss of N and proceeded by covalent cross-linking to nitrile imine intermediates that involved the side chains of N-terminal arginine, lysine, and histidine, as well as the peptide amide groups.
View Article and Find Full Text PDFJACS Au
November 2024
Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
To understand the recently observed enigmatic nonadiabatic energy transfer for hyperthermal H atom scattering from a semiconductor surface, Ge(111)(2 × 8), we present a mixed quantum-classical nonadiabatic molecular dynamics model based on the time-dependent evolution of Kohn-Sham orbitals and a classical path approximation. Our results suggest that facile nonadiabatic electronic transitions from the valence band to the conduction band occur selectively at the rest atom site, where surface states are doubly occupied, but not at the adatom site, where empty surface states are localized. This drastic site specificity can be attributed to the changes of the local band structure upon energetic H collisions at different surface sites, leading to transient near degeneracies and significant couplings between occupied and unoccupied orbitals at the rest atom but not at the adatom.
View Article and Find Full Text PDFJ Am Soc Mass Spectrom
January 2025
Department of Chemistry, Bagley Hall, Box 351700, University of Washington, Seattle, Washington 98195-1700, United States.
Peptide conjugates furnished with a 2,5-diaryltetrazolecarbonyl tag at the C-terminal lysine, which we call peptide--K, were found to undergo efficient cross-linking of Asp, Glu, Asn, and Gln residues to transient nitrile-imine intermediates produced by photodissociation and collision-induced dissociation (CID) of the tetrazole ring in gas-phase ions. UV photodissociation (UVPD) at 213 nm achieved cross-linking conversion yields of 37 and 61% for DAAAK--K and EAAAK--K, respectively. The yields for NAAAK--K and QAAAK--K were 29 and 57%, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!