Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/physreva.34.80 | DOI Listing |
Phys Rev Lett
December 2024
ITAMP, Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, Massachusetts 02138, USA.
We make absolute frequency measurements of Cs Rydberg transitions, |6S_{1/2},F=3⟩→|nS_{1/2}(n=23-90)⟩ and |nD_{3/2,5/2}(n=21-90)⟩, with an accuracy of less than 72 kHz. The quantum defect parameters for the measured Rydberg series are the most precise obtained to date. The quantum defect series is terminated at δ_{4}, showing that prior fits requiring higher order quantum defects reflect uncertainties in the observations.
View Article and Find Full Text PDFCommun Phys
December 2024
LaserLaB, Department of Physics and Astronomy, Vrije Universiteit Amsterdam, De Boelelaan 1081, 1081 HV Amsterdam, the Netherlands.
Laser spectroscopy of atomic hydrogen and hydrogen-like atoms is a powerful tool for tests of fundamental physics. The 1-2 transition of hydrogen in particular is a cornerstone for stringent Quantum Electrodynamics (QED) tests and for an accurate determination of the Rydberg constant. We report laser excitation of the 1-2 transition in singly-ionized helium (He), a hydrogen-like ion with much higher sensitivity to QED than hydrogen itself.
View Article and Find Full Text PDFMass Spectrom Rev
December 2024
Department of Chemistry and Chemical Biology, Indiana University, Indianapolis, Indiana, USA.
Mass spectrometry (MS) is a powerful analytical technique that typically involves sample preparation and online analytical separation before MS detection. Traditional methods often face bottlenecks in sample preparation and analytical separation, despite the rapid detection capabilities of MS. This review explores the integration of electrokinetic manipulations directly with the ionization step to enhance MS performance, focusing on methods that eliminate or simplify sample preparation and separation processes.
View Article and Find Full Text PDFJ Phys Chem A
December 2024
Radboud University Nijmegen, Institute for Molecules and Materials, Heijendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
In molecular beam scattering experiments, an important technique for measuring product energy and angular distributions is velocity map imaging following photoionization of one or more scattered species. For studies with cold molecular beams, the ultimate resolution of such a study is often limited by the product detection process. When state-selective ionization detection is used, excess energy from the ionization step can transfer to kinetic energy in the target molecular ion-electron pair, resulting in measurable cation recoil.
View Article and Find Full Text PDFJ Chem Phys
December 2024
School of Physics, Trinity College Dublin, Dublin D02 PN40, Ireland.
GW and Bethe-Salpeter equation (BSE) methods are used to calculate energies of excited states of organic molecules in the Quest-3 database [Loos et al., J. Chem.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!