Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.32.1588DOI Listing

Publication Analysis

Top Keywords

multimode laser
4
laser injected
4
injected signal
4
signal steady-state
4
steady-state linear
4
linear stability
4
stability analysis
4
multimode
1
injected
1
signal
1

Similar Publications

Significance: Laparoscopic surgery presents challenges in localizing oncological margins due to poor contrast between healthy and malignant tissues. Optical properties can uniquely identify various tissue types and disease states with high sensitivity and specificity, making it a promising tool for surgical guidance. Although spatial frequency domain imaging (SFDI) effectively measures quantitative optical properties, its deployment in laparoscopy is challenging due to the constrained imaging environment.

View Article and Find Full Text PDF

A new class of higher-order topological insulators that localize energy at arbitrary multiple sites.

Sci Bull (Beijing)

January 2025

Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China. Electronic address:

Z-classified topological phases lead to a larger-than-unity number of topological states. However, these multiple topological states are only localized at the corners in nonlocal systems. Here, first, we rigorously prove that the multiple topological states of nonlocal Su-Schrieffer-Heeger (SSH) chains can be inherited and realized by local aperiodic chains with only the nearest couplings.

View Article and Find Full Text PDF

A novel, to the best of our knowledge, approach for the modal decomposition of a fiber laser beam is demonstrated using a spatial mode multiplexer. Since the modal decomposition is carried out optically, this approach is able to obtain the modal content at speeds up to the GHz level. In order to demonstrate such performance, we have applied this approach to the modal analysis of a -switched pulse generated in a multimode fiber with alternating intra-pulse mode content.

View Article and Find Full Text PDF

Superior Multimodal Luminescence in a Stable Single-Host Nanomaterial with Large-Scale Synthesis for High-Level Anti-Counterfeiting and Encryption.

Adv Sci (Weinh)

January 2025

Key Laboratory for High Efficiency Energy Conversion Science and Technology of Henan Province, International Joint Research Laboratory of New Energy Materials and Devices of Henan Province, School of Physics and Electronics, Henan University, Kaifeng, 475004, P. R. China.

Multimode luminescent materials exhibit tunable photon emissions under different excitation or stimuli channels, endowing them high encoding capacity and confidentiality for anti-counterfeiting and encryption. Achieving multimode luminescence into a stable single material presents a promising but remains a challenge. Here, the downshifting/upconversion emissions, color-tuning persistent luminescence (PersL), temperature-dependent multi-color emissions, and hydrochromism are integrated into Er ions doped CsNaYbCl nanocrystals (NCs) by leveraging shallow defect levels and directed energy migration.

View Article and Find Full Text PDF

Construction of Heterogeneous Aggregation-Induced Emission Microspheres with Enhanced Multi-Mode Information Encryption.

Molecules

December 2024

Guangdong Key Laboratory for Hydrogen Energy Technologies, Key Laboratory of Digital Decorative Materials for Building Ceramics in Guangdong Province, School of Materials and Energy, Foshan University, Foshan 528000, China.

Traditional organic light-emitting materials hinder their anti-counterfeiting application in solid state due to their aggregation-caused quenching effect. A facile and straightforward method was reported to introduce AIE molecules into microspheres and manipulate different reaction parameters to prepare AIE microspheres with different morphologies. In this strategy, fluorescent microspheres with spherical, apple-shaped, and hemoglobin-like types were synthesized.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!