Download full-text PDF

Source
http://dx.doi.org/10.1103/physreva.32.332DOI Listing

Publication Analysis

Top Keywords

quantum theory
4
theory spatial
4
spatial temporal
4
temporal coherence
4
coherence properties
4
properties stimulated
4
stimulated raman
4
raman scattering
4
quantum
1
spatial
1

Similar Publications

How does goldene stack?

Mater Horiz

January 2025

Department of Applied Physics and Center for Computational Engineering and Sciences, State University of Campinas, Campinas, São Paulo, Brazil.

The recent synthesis of goldene, a 2D atomic monolayer of gold, has opened new avenues in exploring novel materials. However, the question of when multilayer goldene transitions into bulk gold remains unresolved. This study used density functional theory calculations to address this fundamental question.

View Article and Find Full Text PDF

The Best of Both Worlds: ΔDFT Describes Multiresonance TADF Emitters with Wave-Function Accuracy at Density-Functional Cost.

J Phys Chem Lett

January 2025

Mulliken Center for Theoretical Chemistry, Clausius Institute for Physical and Theoretical Chemistry, Rheinische Friedrich-Wilhelms Universität Bonn, Beringstraße 4, 53115 Bonn, Germany.

With their narrow-band emission, high quantum yield, and good chemical stability, multiresonance thermally activated delayed fluorescence (MR-TADF) emitters are promising materials for OLED technology. However, accurately modeling key properties, such as the singlet-triplet (ST) energy gap and fluorescence energy, remains challenging. While time-dependent density functional theory (TD-DFT), the workhorse of computational materials science, suffers from fundamental issues, wave function-based coupled-cluster (CC) approaches, like approximate CC of second-order (CC2), are accurate but suffer from high computational cost and unfavorable scaling with system size.

View Article and Find Full Text PDF

Identification of promising dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B inhibitors from selected terpenoids through molecular modeling.

Bioinform Adv

December 2024

Structural and Computational Biology Group, Nutritional and Industrial Biochemistry Research Unit, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria.

Motivation: Investigating novel drug-target interactions is crucial for expanding the chemical space of emerging therapeutic targets in human diseases. Herein, we explored the interactions of dipeptidyl peptidase-4 and protein tyrosine phosphatase 1B with selected terpenoids from African antidiabetic plants.

Results: Using molecular docking, molecular dynamics simulations, molecular mechanics with generalized Born and surface area solvation-free energy, and density functional theory analyses, the study revealed dipeptidyl peptidase-4 as a promising target.

View Article and Find Full Text PDF

Solvatochromism and cis-trans isomerism in azobenzene-4-sulfonyl chloride.

Photochem Photobiol Sci

January 2025

CQC-IMS, Department of Chemistry, University of Coimbra, 3004-535, Coimbra, Portugal.

Solvatochromism exhibited by azobenzene-4-sulfonyl chloride (here abbreviated as Azo-SCl) has been investigated in a series of non-polar, polar-aprotic and polar-protic solvents. The UV-vis spectra of Azo-SCl exhibit two long-wavelength bands, observed at 321-330 nm (band-I) and 435-461 nm (band-II), which are ascribed to the π*-π (S ← S) and π*-n (S ← S) transitions, respectively. The shorter wavelength band indicates a reversal in solvatochromism, from negative to positive solvatochromism, for a solvent with a dielectric constant of 32.

View Article and Find Full Text PDF

A noise-robust post-processing pipeline for accelerated phase-cycled Na Multi-Quantum Coherences MRI.

Z Med Phys

January 2025

Aix-Marseille Univ, CNRS, CRMBM, Marseille, France; APHM, Hôpital Universitaire Timone, CEMEREM, Marseille, France; Department of Radiology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.

Purpose: To develop an improved post-processing pipeline for noise-robust accelerated phase-cycled Cartesian Single (SQ) and Triple Quantum (TQ) sodium (Na) Magnetic Resonance Imaging (MRI) of in vivo human brain at 7 T.

Theory And Methods: Our pipeline aims to tackle the challenges of Na Multi-Quantum Coherences (MQC) MRI including low Signal-to-Noise Ratio (SNR) and time-consuming Radiofrequency (RF) phase-cycling. Our method combines low-rank k-space denoising for SNR enhancement with Dynamic Mode Decomposition (DMD) to robustly separate SQ and TQ signal components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!