Structural aspects of the effectiveness of bisphosphonates as competitive inhibitors of the plant vacuolar proton-pumping pyrophosphatase.

Biochem J

Biochemistry and Physiology Department, IACR-Rothamsted, Harpenden, Hertfordshire AL5 2JQ, U.K.

Published: February 1999

The bisphosphonates (general structure PO3-R-PO3) competitively inhibit soluble and membrane-bound inorganic pyrophosphatases (PPases) with differing degrees of specificity. Aminomethylenebisphosphonate (AMBP; HC(PO3)2NH2) is a potent, specific inhibitor of the PPase of higher plant vacuoles (V-PPase). To explore the possibility of constructing photoactivatable probes from bisphosphonates to label the active site of V-PPase we analysed the effects of different analogues on the hydrolytic and proton pumping activity of the enzyme. Bisphosphonates with a range of structures inhibited competitively and the effects on PPi hydrolysis correlated with the effects on proton pumping. Low-molecular-mass bisphosphonates containing hydrophilic groups (alpha-NH2 or OH) were the most effective, suggesting that the catalytic site is in a restricted polar pocket. Bisphosphonates containing a benzene ring were less active but the introduction of a nitrogen atom into the ring increased activity. Compounds of the general formula NH2(CH2)nC(PO3)2OH were more inhibitory than compounds of the H(CH2)nC(PO3)2NH2, NH2(CH2)nC(PO3)2NH2 or OH(CH2)nC(PO3)2NH2 series, with activity decreasing as n increased. A nitrogen atom in the carbon chain increased activity but activity was decreased by the presence of an oxygen atom. An analogue with a ring attached via a four-carbon chain, which included an amide linkage and a hydroxy group on the alpha-carbon atom, inhibited competitively (Ki=62.0 microM), suggesting that it may be possible to design bisphosphonate inhibitors which contain a photoactivatable azido group for photoaffinity labelling of V-PPase active site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1219987PMC

Publication Analysis

Top Keywords

active site
8
proton pumping
8
inhibited competitively
8
nitrogen atom
8
increased activity
8
bisphosphonates
6
activity
5
structural aspects
4
aspects effectiveness
4
effectiveness bisphosphonates
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!