Inherited breast cancer: an emerging picture.

Clin Genet

Department of Medicine, University of Washington, Seattle 98105, USA.

Published: December 1998

A role for BRCA1 and BRCA2 in the control of genome integrity easily fits a tumor suppressor model. It is well established that mutations in DNA repair genes lead to genomic instability (138). Genomic instability may directly lead to tumorigenesis by allowing for the accumulation of mutations in key cell cycle regulators (139). The studies summarized here suggest that BRCA1, BRCA2, RAD51. and BARD1 function as a biochemical complex. This complex apparently plays a role in one or more of the DNA damage response pathways. Experimental data suggest that BRCA1 and BRCA2 function as regulators of transcription. These observations highlight some of the fundamental questions that remain to be addressed in the study of the biology of these genes. Are the DNA repair and transcriptional regulatory functions of BRCA1 and BRCA2 related? BRCA1 and BRCA2 may maintain the integrity of the genome by regulating expression of genes directly involved in this process. Alternatively, if the functions are not related, which is required for suppression of tumorigenesis? Researchers also are grappling with another paradox. If BRCA1 and BRCA2 are ubiquitously expressed, why do mutations in BRCA1 and BRCA2 lead specifically to tumors primarily of the breast and ovary, as well as a limited number of other tissues to a lesser degree? Nothing to date has been revealed that would explain how alteration of the transcriptional regulatory function and or the DNA repair function ascribed to BRCA1 and BRCA2 would result in tumor specificity as both of these functions are essential to a broad spectrum of tissues. It is possible that BRCAI and BRCA2 may regulate genes expressed only in the breast and ovary. Similarly, there may be unidentified BRCA1 and BRCA2 co-factors that are active only in the breast and ovary and, therefore, are critical to tumorigenesis. All breast cancer is genetic, although only a small fraction of cases are attributable to inherited genetic predisposition. Most breast cancer is due to genetic alterations that are specific to breast epithelial cells, many of which remain unknown. Integration of genetic approaches into research designed to elucidate biological pathways of breast cancer tumorigenesis will ultimately lead to new information critical to the development of new tools for the diagnosis and treatment of disease.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1399-0004.1998.tb03764.xDOI Listing

Publication Analysis

Top Keywords

brca1 brca2
36
breast cancer
16
dna repair
12
breast ovary
12
brca2
10
brca1
9
genomic instability
8
transcriptional regulatory
8
cancer genetic
8
breast
7

Similar Publications

Introduction: Pancreatic cancer arising in the context of BRCA predisposition may benefit from poly(ADP-ribose) polymerase inhibitors. We analyzed real-world data on the impact of olaparib on survival in metastatic pancreatic cancer patients harboring germline BRCA mutations in Italy, where olaparib is not reimbursed for this indication.

Methods: Clinico/pathological data of pancreatic cancer patients with documented BRCA1-2 germline pathogenic variants who had received first-line chemotherapy for metastatic disease were collected from 23 Italian oncology departments and the impact of olaparib exposure on overall survival (OS) was analyzed.

View Article and Find Full Text PDF

Background And Objective: Selection of patients harboring mutations in homologous recombination repair (HRR) genes for treatment with a PARP inhibitor (PARPi) is challenging in metastatic castration-resistant prostate cancer (mCRPC). To gain further insight, we quantitatively assessed the differential efficacy of PARPi therapy among patients with mCRPC and different HRR gene mutations.

Methods: This living meta-analysis (LMA) was conducted using the Living Interactive Evidence synthesis framework.

View Article and Find Full Text PDF

BRCA functional domains associated with high risk of multiple primary tumors and domain-related sensitivity to olaparib: the Prometheus Study.

ESMO Open

January 2025

Department of Biomedicine, Neuroscience and Advanced Diagnostics (Bind.), Section of Medical Oncology, University of Palermo, Palermo, Italy.

Background: Germline pathogenic variants (gPVs) in the breast cancer susceptibility gene 1/2 (BRCA1/2) genes confer high-penetrance susceptibility to breast cancer (BC) and ovarian cancer (OC). Although most female BRCA carriers develop only a single BRCA-associated tumor in their lifetime, a smaller subpopulation is diagnosed with multiple primary tumors (MPTs). The genetic factors influencing this risk remain unclear.

View Article and Find Full Text PDF

Background: Lu-prostate-specific membrane antigen (PSMA)-617 (LuPSMA) is a radionuclide therapy approved for patients with PSMA-avid metastatic castrate-resistant prostate cancer (mCRPC). We evaluated whether alterations in the DNA damage repair (DDR) pathway were associated with outcomes to LuPSMA.

Patients And Methods: We identified an institutional cohort of men (n = 134) treated with ≥2 cycles of LuPSMA who had panel-based germline and/or tumor genomic sequencing.

View Article and Find Full Text PDF

Integrating BRCA testing into routine prostate cancer care: a multidisciplinary approach by SIUrO and other Italian Scientific Societies.

BMC Cancer

January 2025

Medical and Translational Oncology, Department of Oncology, Azienda Ospedaliera Santa Maria, Viale Tristano Di Joannuccio 1, Terni, 05100, Italy.

Prostate cancer (PCa) ranks among the most prevalent malignancies in men, with notable associations to Hereditary Breast and Ovarian Cancer Syndrome (HBOC) and Lynch Syndrome, both linked to germline likely pathogenetic variant/pathogenetic variant (LPV/PV) in genes involved in DNA repair. Among these genes, BRCA2 in PCa patients is the most frequently altered. Despite progresses, challenges in BRCA carriers detection persist, with a quarter of PCa cases lacking family history.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!