Heart dysfunction in chronic diabetes has been observed to be associated with depressed myofibrillar adenosine triphosphatase activities as well as abnormalities in the sarcoplasmic reticular and sarcolemmal calcium transport processes. The evidence has been presented to show that alterations in the expression of myosin isozymes and regulatory proteins as well as myosin phosphorylation contribute to the development of myofibrillar remodeling in the diabetic heart. Defects in sarcoplasmic reticular and sarcolemmal calcium transport appear to be due to the accumulation of lipid metabolites in the membrane. Different agents, such as calcium-antagonists, beta-adrenoceptor blockers, angiotensin converting enzyme inhibitors, metabolic interventions and antioxidants, have been reported to exert beneficial effects in preventing subcellular remodeling and cardiac dysfunction in chronic diabetes. Clinical and experimental investigations have suggested that increased sympathetic activity, activated cardiac renin-angiotensin system, myocardial ischemia/functional hypoxia and elevated levels of glucose for a prolonged period, due to insulin deficiency, result in oxidative stress. It is proposed that oxidative stress associated with a deficit in the status of the antioxidant defense system may play a critical role in subcellular remodeling, calcium-handling abnormalities and subsequent diabetic cardiomyopathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0008-6363(98)00186-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!