We have cloned a cDNA containing the entire coding sequence of a marsupial (the brushtail possum, Trichosurus vulpecula) zona pellucida protein (ZPB). The open reading frame of 1,581 nt is predicted to encode a ZPB polypeptide of 527 amino acids which contains 20 cysteine residues, 7 potential N-linked glycosylation sites, a potential N-terminal signal peptide and a potential C-terminal trans-membrane domain, preceded by a furin proteolytic processing signal. Sequence comparisons between possum ZPB and orthologous polypeptides from 7 eutherian species and from Xenopus laevis, reveal the existence of a high degree of sequence similarity, particularly in the central portion of the molecule. Cysteine residues are highly conserved, and all nine species possess potential N-terminal signal peptide sequences and C-terminal trans-membrane domains of approximately the same length. In situ hybridisation revealed that expression of ZPB was restricted to oocytes of primordial and primary follicles of adult possums; no expression was detected in the surrounding granulosa cells. The broad conservation of ZPB sequence, structure and expression over a wide range of mammalian species, revealed by our studies, makes it unlikely that these features account for the different properties of the marsupial and eutherian zona pellucidae.

Download full-text PDF

Source
http://dx.doi.org/10.1002/(SICI)1098-2795(199902)52:2<174::AID-MRD8>3.0.CO;2-7DOI Listing

Publication Analysis

Top Keywords

zona pellucida
8
pellucida protein
8
protein zpb
8
trichosurus vulpecula
8
brushtail possum
8
cysteine residues
8
potential n-terminal
8
n-terminal signal
8
signal peptide
8
c-terminal trans-membrane
8

Similar Publications

Misfolding of the cellular PrP (PrP) protein causes prion disease, leading to neurodegenerative disorders in numerous mammalian species, including goats. A lack of PrP induces complete resistance to prion disease. The aim of this work was to engineer Alpine goats carrying knockout (KO) alleles of PRNP, the PrP-encoding gene, using CRISPR/Cas9-ribonucleoproteins and single-stranded donor oligonucleotides.

View Article and Find Full Text PDF

In mammals, blastocyst-stage trophectoderm (TE) contacts the maternal body at the time of implantation and forms the placenta after implantation, which supports the development of the fetus. Studying gene function in TE and placenta is important to understand normal implantation and pregnancy processes and their dysfunction. However, genetically modified mice are commonly generated by manipulating pronuclear-stage zygotes, which modify both the genome of the fetus and the placenta.

View Article and Find Full Text PDF

Background: The role of Zona pellucida glycoprotein 3 (ZP3) is unclear in pancreatic adenocarcinoma (PAAD).

Objective: This study aimed to explore the role of ZP3 in PAAD.

Methods: A comparative analysis of ZP3 gene expression was performed to discern differences between various types of cancer and PAAD, leveraging data sourced from The Cancer Genome Atlas (TCGA).

View Article and Find Full Text PDF

Objective: To investigate whether artificial removal of zona pellucida (ZP) at the pronuclear stage improves good-quality embryos and blastocyst development in patients with difficulty conceiving because of severe fragmentation in early-cleavage stage.

Design: Exploratory investigation.

Setting: Reproductive center.

View Article and Find Full Text PDF

Decoding the Genes Orchestrating Egg and Sperm Fusion Reactions and Their Roles in Fertility.

Biomedicines

December 2024

Medical Genomics Research Department, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Ministry of National Guard Health Affairs (MNGHA), Riyadh 11426, Saudi Arabia.

Mammalian fertilization is a complex and highly regulated process that has garnered significant attention, particularly with advancements in assisted reproductive technologies such as in vitro fertilization (IVF). The fusion of egg and sperm involves a sequence of molecular and cellular events, including capacitation, the acrosome reaction, adhesion, and membrane fusion. Critical genetic factors, such as IZUMO1, JUNO (also known as FOLR4), CD9, and several others, have been identified as essential mediators in sperm-egg recognition and membrane fusion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!