Glucose and fructose enter mammalian cells via facilitated diffusion, a process regulated by five glucose transporter isoforms (GLUT1-5) at the plasma membrane. The tissue-specific pattern of GLUT isoform expression likely reflects differing needs for glucose transport by various tissues. Myocytes must respond expeditiously to increased metabolic demand. A basal isoform, GLUT1, and the insulin-regulatable glucose transporter, GLUT4, have been demonstrated in human myocytes. GLUT3 has a high affinity for glucose, but its presence in human myocardium has not been clearly established. The purpose of this study was to determine whether GLUT3 protein is present in human cardiac myocytes. We examined rapidly frozen myocardial tissue from the explanted heart of seven patients undergoing cardiac transplantation, from the heart of a young, previously healthy male organ donor, from the heart of a 67-year-old woman without known cardiac disease who had a fatal stroke, and from the heart of six human fetuses. GLUT3 protein was detected by immunoblots and localized by light and electron microscopy immunohistochemistry. The presence of GLUT3 protein was verified in myocardial tissue by both immunoblots and immunohistochemistry. Light and electron microscopy confirmed that GLUT3 was in cardiac myocytes. GLUT3 was also demonstrated as a 48 kDa protein in fetal myocardium, which was present at 10 weeks, increased at 15 weeks, then decreased at 20 weeks of gestation. GLUT3 is present in human adult and fetal myocardium. Human myocardial GLUT3 regulation and its role in myocardial glucose uptake remain to be elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2736(98)00216-8 | DOI Listing |
J Immunother Cancer
January 2025
Biotherapy Center & Cancer Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, People's Republic of China
Background: Glucose deprivation inhibits T-cell metabolism and function. Glucose levels are low in the tumor microenvironment of solid tumors and insufficient glucose uptake limits the antitumor response of T cells. Furthermore, glucose restriction can contribute to the failure of chimeric antigen receptor T (CAR-T) cell therapy for solid tumors.
View Article and Find Full Text PDFIntroduction: Advanced glycation end products (AGEs) play a critical role in the development of vascular diseases in diabetes. Although stem cell therapies often involve exposure to AGEs, the impact of this environment on extracellular vesicles (EVs) and endothelial cell metabolism remains unclear.
Methods: Human umbilical cord mesenchymal stem cells (MSCs) were treated with either 0 ng/ml or 100 ng/ml AGEs in a serum-free medium for 48 hours, after which MSC-EVs were isolated.
Sci Adv
January 2025
Translational Research Program in Pediatric Orthopedics, Department of Surgery, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.
The initial interzone cells for synovial joints originate from chondrocytes, but such critical transition is minimally understood. With single-cell RNA sequencing (scRNA-seq) of murine embryonic knee joint primordia, we discovered that heightened expression of glycolysis genes characterized developing interzone cells when compared to flanking chondrocytes. Conditional deletion of the glucose transporters and/or , in either the incipient pre-skeletal mesenchyme with or in chondrocytes with , disrupted interzone formation dose-dependently.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Thoracic Surgery, School of Clinical Medicine, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Henan University, No.7, Wei Wu Road, Jinshui District, Zhengzhou, Henan, 450003, China.
Background: The RAR-related orphan receptor alpha (RORA), a circadian clock molecule, is highly associated with anti-oncogenes. In this paper, we defined the precise action and mechanistic basis of RORA in ESCC development under hypoxia.
Methods: Expression analysis was conducted by RT-qPCR, western blotting, immunofluorescence (IF), and immunohistochemistry (IHC) assays.
Redox Rep
December 2025
Department of Clinical Laboratory, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, People's Republic of China.
Objectives: Bone remodeling imbalance contributes to osteoporosis. Though current medications enhance osteoblast involvement in bone formation, the underlying pathways remain unclear. This study was aimed to explore the pathways involved in bone formation by osteoblasts, we investigate the protective role of glycolysis and N6-methyladenosine methylation (m6A) against oxidative stress-induced impairment of osteogenesis in MC3T3-E1 cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!