Biochemical properties of a high fidelity DNA ligase from Thermus species AK16D.

Nucleic Acids Res

Department of Microbiology, Hearst Microbiology Research Center, Strang Cancer Prevention Center, The Joan and Sanford I. Weill Medical College of Cornell University, 1300 York Avenue, Box 62, New York, NY 10021, USA.

Published: February 1999

NAD+-dependent DNA ligases from thermophilic bacteria Thermus species are highly homologous with amino acid sequence identities ranging from 85 to 98%. Thermus species AK16D ligase, the most divergent of the seven Thermus isolates collected worldwide, was cloned, expressed in Escherichia coli and purified to homogeneity. This Thermus ligase is similar to Thermus thermophilus HB8 ligase with respect to pH, salt, NAD+, divalent cation profiles and steady-state kinetics.However, the former is more discriminative toward T/G mismatches at the 3'-side of the ligation junction, as judged by the ratios of initial ligation rates of matched and mismatched substrates. The two wild-type Thermus ligases and a Tth ligase mutant (K294R) demonstrate 1-2 orders of magnitude higher fidelity than viral T4 DNA ligase. Both Thermus ligases are active with either the metal cofactor Mg2+, Mn2+or Ca2+but not with Co2+, Ni2+, Cu2+or Zn2+. While the nick closure step with Ca2+becomes rate-limiting which results in the accumulation of DNA-adenylate intermediate, Ni2+only supports intermediate formation to a limited extent. Both Thermus ligases exhibit enhanced mismatch ligation when Mn2+is substituted for Mg2+, but the Tsp. AK16D ligase remains more specific toward perfectly matched substrate.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148248PMC
http://dx.doi.org/10.1093/nar/27.3.788DOI Listing

Publication Analysis

Top Keywords

ligase thermus
12
thermus species
12
thermus ligases
12
thermus
9
dna ligase
8
species ak16d
8
ak16d ligase
8
ligase
7
biochemical properties
4
properties high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!