AI Article Synopsis

  • Bonnet monkeys (Macaca radiata) developed severe pancreatic lesions after being fed protein-deficient diets high in tapioca or corn starch for 3 to 5 months, mirroring the effects seen in humans with pancreatic atrophy due to protein deficiency.
  • The monkeys showed significant changes, including acinar cell atrophy and hyperplasia of insulin-producing cells, which are similar to conditions associated with malnutrition and tropical pancreatopathy.
  • The study ruled out harmful substances from tapioca as a cause, indicating that these dietary changes directly lead to pancreatic damage and demonstrating the relevance of these monkey models for understanding human pancreatic health issues related to poor nutrition.

Article Abstract

Pancreatic degenerative lesions of identical nature could be induced in bonnet monkeys (Macaca radiata) fed protein-deficient tapioca or cassava starch-based and corn-starch-based diets for 3 or 5 months. Marked to severe lobular and acinar cell atrophy in animals fed low-protein diets resembled human pancreatic atrophy resulting from protein deficiency. Animals fed low-protein, high-carbohydrate diets showed lesions akin to tropical chronic calculus pancreatopathy with diabetes mellitus. The pancreatic lesions comprised moderate to marked acinar cell atrophy, marked islet hyperplasia or nesidioblastosis with hypertrophy and mucoid metaplasia of the duct epithelium. Mucoid vasculopathy of the pancreatic artery and arterioles was observed in all animals given protein-deficient diets. It was enhanced in those given additional carbohydrate. Identical lesions were observed after using either source of carbohydrate. This excluded the role of toxic factors such as cyanoglycosides or heavy metals from a tapioca source in initiating the lesions. The study establishes monkey models for the spectrum of human pancreatic changes associated with malnutrition owing to protein deficiency and nutritional imbalance with low-protein, high-starch diets. The experiments demonstrate the dual effects of similar diets on the parenchyma and vasculature of the pancreas.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006676-199901000-00011DOI Listing

Publication Analysis

Top Keywords

pancreatic changes
8
acinar cell
8
cell atrophy
8
animals fed
8
fed low-protein
8
human pancreatic
8
protein deficiency
8
pancreatic
6
diets
6
lesions
5

Similar Publications

Insulin plays a key role in metabolic homeostasis. insulin-producing cells (IPCs) are functional analogues of mammalian pancreatic beta cells and release insulin directly into circulation. To investigate the in vivo dynamics of IPC activity, we quantified the effects of nutritional and internal state changes on IPCs using electrophysiological recordings.

View Article and Find Full Text PDF

Background: Chronic low back pain (LBP) is a significant global health concern, often linked to vertebral bone marrow lesions (BML), particularly fatty replacement (FR). This study aims to explore the relationship between the gut microbiome, serum metabolome, and FR in chronic LBP patients.

Methods: Serum metabolomic profiling and gut microbiome analysis were conducted in chronic LBP patients with and without FR (LBP + FR,  = 40; LBP,  = 40) and Healthy Controls (HC,  = 31).

View Article and Find Full Text PDF

Differentiation, reduction, and proliferation of pancreatic β-cells and their regulatory factors.

Diabetol Int

January 2025

Clinical Research Department, Institute of Biomedical Research and Innovation (IBRI), Foundation for Biomedical Research and Innovation at Kobe (FBRI), 6-3-7 Minatojima Minami-machi, Chuo-ku, Kobe, Hyogo 650-0047 Japan.

The prevalence of diabetes has increased rapidly in recent years, and many types of therapeutic agents have been developed. However, the main purpose of these drugs is to lower blood glucose levels, and they are not fundamental solutions. In contrast, our research has been aimed at stimulating and inducing β-cell proliferation in vivo and replenishing β-cells.

View Article and Find Full Text PDF

Pancreatic adenocarcinoma (PAAD) is a highly malignant tumor in the digestive system, with an increasing incidence and mortality rate globally. Recent genetic studies have revealed that the abnormal expression and functional dysregulation of various genes are involved in the occurrence and progression of pancreatic cancer. NIPA-like proteins (NIPAs) are expressed in a variety of cancer types, yet the role of NIPAL1 in cancer remains unclear.

View Article and Find Full Text PDF

Studies of the aging transcriptome focus on genes that change with age. But what can we learn from age-invariant genes-those that remain unchanged throughout the aging process? These genes also have a practical application: they can serve as reference genes in expression studies. Reference genes have mostly been identified and validated in young organisms, and no systematic investigation has been done across the lifespan.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!