Insulin-like growth factor I (IGF-I) and the gonadotropin, FSH, can synergize to stimulate progesterone production in primary cultures of maturing human, rat, and pig granulosa cells. These trophic hormones act by increasing the activity and production of proteins and their gene transcripts essential to sterol uptake, delivery, and utilization in steroidogenesis. We previously observed that FSH and IGF-I interact synergistically to promote the accumulation of steroidogenic acute regulatory protein (StAR) messenger RNA and protein in granulosa cells. Here we investigate potential mechanisms of IGF-I synergy with FSH and the protein kinase A (PKA) pathway in activating the porcine StAR gene promoter. To this end, we first cloned 1423 bp of the porcine StAR promoter upstream of the transcriptional start site using PCR and created 5'-deletional constructs coupled to a cytoplasmically targeted firefly luciferase reporter gene. FSH, 8-bromo-cAMP, and transient transfection of the protein kinase A (PKA) catalytic subunit (driven by the Rous sarcoma virus promoter) were used to activate the PKA effector pathway. All three agonists alone stimulated StAR promoter-driven luciferase activity in primary cultures of granulosa cells after 4-h treatment. IGF-I significantly augmented PKA pathway agonist activation of the StAR promoter, whereas IGF-I had no effect alone. Binding experiments with 125I-labeled ovine FSH-20 in IGF-I (100 ng/ml)-treated granulosa cells showed that FSH binding affinity and receptor number were unchanged by IGF-I treatment. However, IGF-I augmented FSH-stimulated, but not forskolin-stimulated, cAMP accumulation. Analysis of 5'-deletion constructs of the StAR promoter revealed three regions of stimulatory activity within the -139-bp fragment upstream of the transcriptional start site as well as another potentially inhibitory region upstream (-1115 to 905). Elimination of the putative SF-1 site (-48 to -41) virtually abolished StAR promoter responsiveness. In summary, our data indicate that IGF-I can act via two post FSH-binding mechanisms to augment FSH/PKA pathway-mediated StAR gene promoter transactivation: at the level of cAMP accumulation and distal to cAMP production and PKA activation.

Download full-text PDF

Source
http://dx.doi.org/10.1210/endo.140.1.6407DOI Listing

Publication Analysis

Top Keywords

granulosa cells
20
star promoter
16
gene promoter
12
igf-i
9
insulin-like growth
8
growth factor
8
steroidogenic acute
8
acute regulatory
8
regulatory protein
8
promoter
8

Similar Publications

Luteinizing hormone receptor deficiency in immature cumulus-oocyte complexes retrieved for assisted reproduction.

F S Sci

January 2025

Division of Human Reproduction, Department of Obstetrics and Gynecology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil. Electronic address:

This study investigated whether luteinizing hormone receptor (LHR) expression varies in the granulosa cells of individual follicles according to the maturation stage of the oocytes harvested for assisted reproductive technology (ART) treatment. We observed minimal to no LHR mRNA and protein expression in cumulus cells surrounding oocytes arrested in the germinal vesicle (GV) stage. Interestingly, their ability to mature was confirmed by rescue in vitro maturation, suggesting somatic cell LHR deficiency as a key factor for the retrieval of GV oocytes in ART procedures.

View Article and Find Full Text PDF

Identification of a functional vitamin D response element in the promoter of goose anti-Müllerian hormone gene.

Poult Sci

December 2024

Key Laboratory of Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Nanjing, PR China; Jiangsu Province Engineering Research Center of Precision Animal Breeding, Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing, PR China. Electronic address:

Anti-Müllerian hormone (AMH) plays an important role in avian ovarian follicle development. The high mRNA expression of AMH in avian ovarian prehierarchical follicles helps prevent premature granulosa cell differentiation. Vitamin D3 was reported to downregulate AMH mRNA expression in granulosa cells of prehierarchical follicles in hens; however, the underlying molecular mechanism remains unknown.

View Article and Find Full Text PDF

IGF2BP3 curbed by miR-15c-3p restores disrupted lipid storage and progesterone secretion in chicken granulosa cells under oxidative stress through AKT-Raf1-ERK1/2 signaling pathway.

Poult Sci

December 2024

State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Livestock and Poultry Multi-omics, Ministry of Agriculture and Rural Affairs, and Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China. Electronic address:

For commercial laying hens, the continuous high-intensity ovulation process leads to a significant accumulation of reactive oxygen species (ROS) in the granulosa cells, inducing oxidative stress, which accelerates ovarian aging and shortens the peak laying period. The molecular mechanisms underlying this process remain poorly understood. Therefore, we modeled the processes of oxidative stress and antioxidant in chicken granulosa cells.

View Article and Find Full Text PDF

Development of machine learning models for diagnostic biomarker identification and immune cell infiltration analysis in PCOS.

J Ovarian Res

January 2025

Reproductive Medicine Center, Department of Obstetrics and Gynecology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

Background: Polycystic ovary syndrome (PCOS) is a common endocrine disorder affecting women of reproductive age. It is characterized by symptoms such as hyperandrogenemia, oligo or anovulation and polycystic ovarian, significantly impacting quality of life. However, the practical implementation of machine learning (ML) in PCOS diagnosis is hindered by the limitations related to data size and algorithmic models.

View Article and Find Full Text PDF

Scabiosa artropurperea, a member of the Dipsacaceae family and Scabiosa genus, is renowned for its medicinal properties. In the present study, we investigated the impact of Scabiosa artropurperea aqueous extract (AES) on the in vivo reproductive functions in Queue Fine de l'Ouest ewes, and on in vitro ovine granulosa cells. Ewes were synchronized for 14 days with intra-vagina progesterone (P4) devices (FGA, 20 mg) and divided into four groups receiving daily oral doses of 0, 1, 2, and 4 mg of AES/kg Live Body Weight (LBW), respectively.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!