Streptomycin dependence can be caused by mutations in ribosomal protein S12. Mutations suppressing such streptomycin dependence have been found in ribosomal proteins S4 and S5, and in 16S rRNA. Here a new suppressor mutation localized in elongation factor Tu (EF-Tu) is described, consistent with recent models of ribosome-EF-Tu-tRNA interaction at the decoding centre. The EF-Tu mutation was obtained by genetic selection for streptomycin independence; it was identified as Ala375 --> Thr, previously described as EF-TuA(R) and known to confer a kirromycin-resistant, error-prone phenotype. Also, other streptomycin-dependent (SmD) S12 mutations could be complemented by this mutation. The streptomycin-independent (Sm1) strain grows more slowly than the wild-type (wt), suggesting that not all the defects of the S12 mutation can be complemented by EF-Tu[A375T]. Moreover, this strain is more susceptible than wt to reduction in the cellular EF-Tu concentration, and disruption of tufB led to considerable growth-rate impairment. Expression of EF-Tu from tufB, not only of wt EF-Tu and EF-Tu[A375T] but, remarkably, also of EF-Tu[G222D], known as EF-TuB0 and defective in protein synthesis, equally contributed to cell growth. In vitro analysis revealed a decreased translational activity of wt EF-Tu with SmD ribosomes as compared to EF-Tu[A375T], while EF-Tu[G222D] showed no activity at all, just as with wt ribosomes. Possible mechanisms are discussed for the improved growth rate observed in such Sm1 strains when they include wt EF-Tu or EF-Tu[G222D].

Download full-text PDF

Source
http://dx.doi.org/10.1099/00221287-144-12-3309DOI Listing

Publication Analysis

Top Keywords

streptomycin dependence
12
ribosomal protein
8
protein s12
8
s12 mutations
8
ef-tu
7
kirromycin-resistant ef-tu
4
ef-tu species
4
species reverses
4
streptomycin
4
reverses streptomycin
4

Similar Publications

The continued prevalence of drug-resistant Mycobacterium tuberculosis (Mtb) strains, particularly against first-line antitubercular (anti-TB) drugs, presents an impending public health threat that necessitates the exploration and development of New Chemical Entities (NCEs). In search of new anti-TB leads, a library of ethyl 5-(1-benzyl-1H-indol-5-yl) isoxazole-3-carboxylates were generated through a strategy of scaffold hopping from the proven isoxazole-3-carboxylate-based anti-TB pharmacophore. We evaluated their antibacterial potential against a panel of pathogenic bacteria and Mtb HRv strains.

View Article and Find Full Text PDF

The global spread of antimicrobial resistance genes (ARGs) poses a significant threat to public health. While antibiotics effectively treat bacterial infections, they can also induce gut dysbiosis, the severity of which varies depending on the specific antibiotic treatment used. However, it remains unclear how gut dysbiosis affects the mobility and dynamics of ARGs.

View Article and Find Full Text PDF

The present study investigates the prevalence and etiology of subclinical mastitis in Țurcana sheep flocks located in south-western Romania. Milchtest and California Mastitis Test (CMT), were used for the detection of subclinical mastitis. A number of 360 milk samples across three lactation phases were analyzed.

View Article and Find Full Text PDF

Light inducible gene expression system for Streptomyces.

Sci Rep

October 2024

Life Science Research Center, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, 252-0880, Japan.

The LitR/CarH family comprises adenosyl B-based photosensory transcriptional regulators that control light-inducible carotenoid production in nonphototrophic bacteria. In this study, we established a blue-green light-inducible hyperexpression system using LitR and its partner ECF-type sigma factor LitS in streptomycin-producing Streptomyces griseus NBRC 13350. The constructed multiple-copy number plasmid, pLit19, carried five genetic elements: pIJ101rep, the thiostrepton resistance gene, litR, litS, and σ-recognized light-inducible crtE promoter.

View Article and Find Full Text PDF

Guided by the idea that the presence of a heterocyclic aromatic core and tyramine moiety, under the umbrella of a single molecular scaffold could bring interesting biological properties, herein we present synthesis, characterization, with two crystal structures reported, and biological evaluation of some tyramine derivates. Cytotoxic and antimigratory potential was addressed by using a colorectal cancer cell line as a model system. Although possessing no cytotoxic effects, two compounds have shown strong antimigratory potential in low doses, with no effect on healthy MRC-5 cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!