An innovative technique for corrosion testing of metallic dental materials is introduced. The thin electrolyte layer technique (TET) simulates the physical characteristics of the oral environment by employing a still, thin layer of an electrolyte, in contrast to bulk electrolyte techniques (BET) which utilize relatively large quantities of fluid. Limiting current density tests on a platinum electrode revealed a lower surface oxygen content for TET. Borate buffer (pH 6.8) was employed as an electrolyte. The effect of lower oxygen content in TET on passivation and polarization characteristics of 316L SS in 0.9% saline was investigated. The results revealed differences in the polarization resistance and open circuit potential development with time, as well as in anodic and cathodic polarization behavior. Lower O2 concentration in TET was attributed to different electrolyte convection characteristics under both testing conditions. Additionally, use of the TET resulted in better data reproducibility. Overall, this investigation led to a deeper understanding of the electrochemical processes inherent in thin electrolytes such as those found in the oral environment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0142-9612(98)00129-x | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!