SIN-1 has been used, in vitro, to simultaneously generate nitric oxide (*NO) and superoxide (O*-2). However, the pharmacological activity of SIN-1 resembles that of a *NO donor. SIN-1 decays by a three-step mechanism. After initial isomerization to an open ring form, SIN-1A reduces oxygen by a one-electron transfer reaction to give O*-2 and the SIN-1 cation radical, which decomposes to form SIN-1C and *NO. Here we report that one-electron oxidizing agents, in addition to oxygen, can oxidize SIN-1A, resulting in the release of *NO without the concomitant formation of O*-2. We demonstrate that easily reducible nitroxides, such as the nitronyl and imino nitroxides, are able to oxidize SIN-1. Biological oxidizing agents such as ferricytochrome c also stimulate *NO production from SIN-1. In addition, decomposition of SIN-1 by human plasma or by the homogenate of rat liver, kidney, and heart tissues results in the formation of *NO. Our findings suggest that SIN-1 may react with heme proteins and other electron acceptors in biological systems to produce *NO. Thus, at the relatively low in vivo oxygen concentrations, SIN-1 is likely to behave more like an *NO donor than a peroxynitrite donor. The relevance of this reaction to myocardial protection afforded by SIN-1 in ischemia/reperfusion-induced injury is discussed.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/abbi.1998.1007 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!