Cancellous bone apparent stiffness and strength are dependent upon material properties at the tissue level and trabecular architecture. Microstructurally accurate, large-scale finite element (LS-FE) models were used to predict the experimental apparent stiffness of human vertebral cancellous bone and to estimate the trabecular hard tissue stiffness. Twenty-eight LS-FE models of cylindrical human vertebral cancellous bone specimens (8 mm in diameter, 9.5 mm in height, one each from twenty-eight individuals) were generated directly from microcomputed tomography images and solved by a special purpose iterative finite element program. The experimental apparent stiffness and strength of the specimens were determined by mechanical testing to failure in the infero superior direction. Morphometric measurements including bone volume fraction (BV/TV), three eigenvalues of the fabric tensor and average P(L) were also calculated. The finite element estimate of apparent stiffness explained much of the variance in both experimental apparent stiffness (r2=0.89) and experimental apparent strength (r2=0.87). Stepwise linear regression analysis demonstrated that the LS-FE estimated apparent stiffness was the only significant predictor of experimental apparent stiffness and strength when it was included with all measured morphometric values. Hard tissue stiffness was quite variable between individuals (mean, 5.7 GPa; S.D. 1.6 GPa), but was not significantly related to age, sex, race, weight or morphometric measures for this sample.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9290(98)00110-9 | DOI Listing |
Materials (Basel)
December 2024
College of Civil Engineering, Tongji University, Shanghai 200092, China.
In recent years, steel-fiber-reinforced concrete (SFRC) has been increasingly applied in shield tunnel engineering. However, most research on SFRC segments focuses on the load-bearing capacity, while the tunnel deformation is an equally critical indicator that decides if the tunnel can operate safely during service conditions. Therefore, it is essential to also study the stiffness variations in SFRC segments, which is closely connected to the serviceability limit state (SLS).
View Article and Find Full Text PDFInt J Womens Health
December 2024
Sydney Women's Endosurgery Centre (SWEC), St George Hospital, Sydney, NSW, Australia.
Objective: We aimed to explore the abnormal pathology findings in appendix specimens removed based on intraoperative abnormal appearance during elective surgery for benign gynaecological conditions by a minimally invasive gynaecologist, as well as the associated complication rate.
Materials And Methods: This retrospective cohort study was conducted in a tertiary referral surgical centre for benign gynaecological conditions between the years 2004-2023. It included patients who underwent appendicectomy by a trained minimally invasive gynaecologist based on observations during surgery for benign gynaecological conditions.
J Mech Behav Biomed Mater
December 2024
Institute of Continuum Mechanics and Biomechanics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Straße 81, Fürth, 90762, Germany. Electronic address:
The mechanical properties of brain and spinal cord tissue have proven to be extremely complex and difficult to assess. Due to the heterogeneous and ultra-soft nature of the tissue, the available literature shows a large variance in mechanical parameters derived from experiments. In this study, we performed a series of indentation experiments to systematically investigate the mechanical properties of porcine spinal cord tissue in terms of their sensitivity to indentation tip diameter, loading rate, holding time, ambient temperature along with cyclic and oscillatory dynamic loading.
View Article and Find Full Text PDFJ Mech Behav Biomed Mater
December 2024
Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, IL, USA; Department of Bioengineering, University of Illinois Urbana-Champaign, IL, USA; Beckman Institute, University of Illinois Urbana-Champaign, IL, USA; Materials Research Laboratory, University of Illinois Urbana-Champaign, IL, USA; Institute for Genomic Biology, University of Illinois Urbana-Champaign, IL, USA; Grainger College of Engineering, University of Illinois Urbana-Champaign, IL, USA.
Pelvic organ prolapse is a debilitating condition that diminishes quality of life, and it has been linked to pregnancy and aging. Injury of the uterosacral ligaments (USLs), which provide apical support to the pelvic organs, is a major cause of uterine prolapse. In this study, we examined the effect of pregnancy and age on the apparent elastic modulus, susceptibility to collagen damage, and extracellular matrix (ECM) composition of the murine USL.
View Article and Find Full Text PDFArch Orthop Trauma Surg
December 2024
Sporthopaedicum Regensburg, Regensburg, Germany.
Purpose: Varus posteromedial rotatory instability (VPMRI) involves anteromedial coronoid fracture (AMCF), lateral ulnar collateral ligament (LUCL), and medial collateral ligament (MCL) injury. There is no general consensus regarding the surgical treatment, but most surgeons recommend internal fixation of the coronoid along with primary ligament repair. This methodology involves postoperative immobilization to allow ligament healing, occasionally associated with stiffness.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!