Acetaldehyde, propionaldehyde, glyceraldehyde-3-P and 4-dimethylaminocinnamaldehyde form Schiff bases in Tris. HCl buffers; the rates of formation and dissociation of Schiff bases, and equilibrium constants for their formation are very similar for the first three aldehydes. The steady-state kinetic constants for the yeast alcohol dehydrogenase-catalyzed reaction, propan-1-ol + NAD+ reversible propionaldehyde + NADH + H+, have been determined in several Tris. HCl buffers of increasing concentration at pH 8.1. In the forward direction, oxidation of alcohol, most kinetic constants are increased by increasing concentrations of Tris. In the reverse direction, reduction of aldehyde, substrate, NADH, Tris and Schiff base were equilibrated before enzyme reaction was started. It was found that Schiff base, rather than Tris, binds to free enzyme competitively with respect to NADH. Tris and Schiff base do not influence the binding of aldehyde to enzyme in any way.

Download full-text PDF

Source
http://dx.doi.org/10.3109/14756369809035827DOI Listing

Publication Analysis

Top Keywords

schiff base
12
yeast alcohol
8
schiff bases
8
tris hcl
8
hcl buffers
8
kinetic constants
8
nadh tris
8
tris schiff
8
tris
6
schiff
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!