Activation of the iNOS gene promoter by Brn-3 POU family transcription factors is dependent upon the octamer motif in the promoter.

Biochim Biophys Acta

Department of Molecular Pathology, The Windeyer Institute of Medical Sciences, University College London Medical School, The Windeyer Building, 46 Cleveland Street, London W1P 6DB, UK.

Published: December 1998

The promoter of the gene encoding the inducible nitric oxide synthase (iNOS) contains an octamer motif which is of importance for its activation by specific stimuli. We show that in contrast to the promoter of the neuronal nitric oxide synthase gene (nNOS) which is strongly activated by the Oct-2 octamer-binding POU family transcription factor, the iNOS gene is only weakly activated by Oct-2 via its octamer motif. Unlike the nNOS promoter, however, the iNOS promoter is strongly activated by the POU family transcription factors Brn-3a and Brn-3b. This activation is dependent upon the octamer motif in the iNOS promoter and requires the activation domain located within the POU domain of Brn-3a or Brn-3b but not the N-terminal activation domain of Brn-3a. Thus different but related POU proteins play important roles in the regulation of the genes encoding different forms of nitric oxide synthase.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0167-4781(98)00234-6DOI Listing

Publication Analysis

Top Keywords

octamer motif
16
pou family
12
family transcription
12
nitric oxide
12
oxide synthase
12
inos gene
8
transcription factors
8
dependent octamer
8
activated oct-2
8
inos promoter
8

Similar Publications

The nucleosome is the fundamental structural unit of chromosome fibers. A DNA wraps around a histone octamer to form a nucleosome, while neighboring nucleosomes interact to form higher-order structures and fit gigabase-long DNAs into a small volume of the nucleus. Nucleosomes interrupt the access of transcription factors to a genomic region, and provide regulatory controls of gene expression.

View Article and Find Full Text PDF

Protease enzymes are of great importance in medicine, industry, and as research tools. Despite the crucial need for detailed knowledge of their proteolytic cleavage specificity, many proteases are poorly characterized. We present a method for fully characterizing the cleavage specificity of proteases through the comprehensive profiling of all possible permutations of octamer peptide substrates in a single experiment.

View Article and Find Full Text PDF

Cystathionine beta-synthase (CBS) is an evolutionarily conserved enzyme that plays a key role in mammalian sulfur amino acid biochemistry, mutations in which are the cause of classical homocystinuria (HCU), an inborn error of metabolism. Although there is agreement in the literature that CBS is a homomultimer, its precise structure is a source of confusion. Here, we performed a series of experiments examining the quaternary structure of various wild-type and mutant CBS enzymes using a combination of native gel electrophoresis, in situ activity assays, analytical ultracentrifugation, and gel filtration.

View Article and Find Full Text PDF

A cellular protein, non-POU-domain-containing octamer binding protein (NONO), bound to the replication complex of Japanese encephalitis virus (JEV) by directly interacting with the viral 3' UTR RNA and NS3 protein. These interactions were also identified in West Nile virus (WNV) and Zika virus (ZIKV). The infection of JEV or the expression of JEV NS3 protein in cells could induce relocation of NONO protein from the nucleus to the cytoplasm.

View Article and Find Full Text PDF

Engineering substrate channeling in a bifunctional terpene synthase.

Proc Natl Acad Sci U S A

October 2024

Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323.

Article Synopsis
  • Fusicoccadiene synthase (PaFS) is a complex enzyme with two main functions: it synthesizes geranylgeranyl diphosphate (GGPP) from smaller molecules and then converts GGPP into fusicoccadiene, a key precursor for another compound.
  • The enzyme's two functional domains (prenyltransferase and cyclase) are connected by a flexible linker, allowing the cyclase domains to randomly interact with the central prenyltransferase core, facilitating efficient substrate channeling.
  • Research shows that even without a covalent bond between the domains, the cyclase can effectively channel GGPP for conversion, suggesting that physical proximity and structural flexibility play crucial roles in the enzyme's efficiency.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!