The models most commonly used to describe the antenna organization of the photosynthetic membrane are the connected units model and the domain model. The theoretical descriptions of the exciton dynamics according to these models are reviewed with emphasis on a common nomenclature. Based on this nomenclature we compare for the two models the kinetics and yields of photochemistry and fluorescence under non-annihilation and annihilation conditions both under continuous light and under flash excitation. The general case is considered, that all initially open reaction centers become gradually closed and that exciton transfer between photosynthetic units (PSUs) is possible. Then, calculated kinetics and yields depend on the model assumptions made to account for the exciton transfer between PSUs. Here we extend the connected units model to flash excitation including exciton-exciton annihilation, and present a new simple mathematical formalism of the domain model under continuous light and flash excitation without annihilation. Product and fluorescence yields predicted by the connected units model for different degrees of connectivity are compared with those predicted by the domain model using the same sets of rate constants. From these calculations we conclude that it is hardly possible to distinguish experimentally between different models by any current method. If at all, classical fluorescence induction measurements are more suited for assessing the excitonic connectivity between PSUs than ps experiments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0005-2728(98)00149-2 | DOI Listing |
Nat Commun
January 2025
Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, 03722, Republic of Korea.
1,4-Azaborine-based arenes are promising electroluminescent emitters with thermally activated delayed fluorescence (TADF), offering narrow emission spectra and high quantum yields due to a multi-resonance (MR) effect. However, their practical application is constrained by their limited operational stability. This study investigates the degradation mechanism of MR-TADF molecules.
View Article and Find Full Text PDFBMC Biotechnol
January 2025
School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, China.
Background: In this study, thermophilic pectinase-producing strains were isolated. Among all the isolates, strain No. 4 was identified as Aspergillus fumigatus BT-4 based on its morphology and 18 S rDNA analysis.
View Article and Find Full Text PDFChemosphere
January 2025
Center for Green Chemistry and Environmental Biotechnology, Ghent University Global Campus, 119-5 Songdomunhwa-Ro, Yeonsu-Gu, Incheon, 406-840 South Korea; Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Ghent University, 653 Coupure Links, Ghent, B-9000, Belgium. Electronic address:
The photocatalytic degradation of rhodamine B (RhB), a cationic dye, and bromocresol green (BCG), an anionic dye, was investigated using oxygen vacancy-enriched ZnO as the catalyst. These dyes were selected due to their differing charges and molecular structures, allowing for a deeper exploration of how these characteristics impact the degradation process. The catalyst was prepared by reducing ZnO with 10% H/Ar gas at 500°C, and the introduction of oxygen vacancies was confirmed using various characterization techniques.
View Article and Find Full Text PDFBiomed Pharmacother
January 2025
Laboratory of Pharmaceutical Technology and Biotechnology, Department of Pharmacy, Federal University of Rio Grande do Norte-UFRN, Natal, RN, Brazil. Electronic address:
Chagas disease is a neglected tropical disease caused by the protozoan Trypanosoma cruzi, remains a significant global health challenge. Currently, benznidazole (BNZ) is the primary treatment in many countries. However, this drug is limited by low bioavailability, significant host toxicity, and reduced efficacy in chronic disease phase.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Shaanxi Key Laboratory of New Transportation Energy and Automotive Energy Saving, School of Energy and Electrical Engineering, Chang'an University, Xi'an, Shaanxi, 710064, PR China.
Benzene and phenol are representative aromatic compounds existing commonly in wastewater. The kinetics of oxidative degradation of benzene and phenol in supercritical water have been investigated in a flow reactor at 823 K and 250 atm, with the excess oxygen ratio ranging from 0.5 to 2.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!