NADH:ubiquinone oxidoreductase (complex I) is an extremely complicated multiprotein complex located in the inner mitochondrial membrane. Its main function is the transport of electrons from NADH to ubiquinone, which is accompanied by translocation of protons from the mitochondrial matrix to the intermembrane space. Human complex I appears to consist of 41 subunits of which 34 are encoded by nDNA. Here we report the cDNA sequences of the hitherto uncharacterized 8 nuclear encoded subunits, all located within the hydrophobic protein (HP) fraction of complex I. Now all currently known 41 proteins of human NADH:ubiquinone oxidoreductase have been characterized and reported in literature, which enables more complete mutational analysis studies of isolated complex I-deficient patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1006/bbrc.1998.9786 | DOI Listing |
Biotech Histochem
January 2025
Faculty of Medicine Novi Sad, Department of Histology and Embriology, University of Novi Sad, Novi Sad, Serbia.
Numerous studies reported about potential effects of L-carnosine in regulation of tumor growth and metabolism. We evaluated the effects of different concentrations of L-carnosine from supplement on mitochondrial respiratory chain complexes of human embryo lung fibroblasts (MRC-5) and human breast cancer cells (MCF-7), with different energy pathways. Also, we analyzed the proliferation index and expression of various markers of oxidative stress.
View Article and Find Full Text PDFPeerJ
January 2025
Museum of Natural History, University of Wroclaw, Wroclaw, Poland.
Background: Legless lizards, the slow worms of the genus are forming secondary contact zones within their Europe-wide distribution.
Methods: We examined 35 populations of and to identify the level of morphological and genetic divergence in Poland. We applied a conventional study approach using metric, meristic, and categorial (coloration) features for a phenotype analysis, and two standard molecular markers, a mitochondrial (NADH-ubiquinone oxidoreductase chain 2; ) and a nuclear (V(D)J recombination-activating protein 1; ) one.
Int J Mol Sci
December 2024
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskie Gory, 119991 Moscow, Russia.
Proton-translocating NADH-ubiquinone oxidoreductase (complex I) catalyzes the oxidation of NADH by ubiquinone accompanied by the transmembrane transfer of four protons, thus contributing to the formation of a proton motive force () across the coupling membranes of mitochondria and bacteria, which drives ATP synthesis in oxidative phosphorylation. In recent years, great progress has been achieved in resolving complex I structure by means of X-ray crystallography and high-resolution cryo-electron microscopy, which has led to the formulation of detailed hypotheses concerning the molecular mechanism of coupling of the redox reaction to vectorial proton translocation. To test and probe proposed mechanisms, a comprehensive study of complex I using other methods including molecular dynamics and a variety of biochemical studies such as kinetic and inhibitory analysis is required.
View Article and Find Full Text PDFEnviron Epigenet
October 2024
Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, United States.
Little is understood about the roles of mitochondria in pregnancy-related adaptations. Therefore, we evaluated associations of maternal early-to-mid pregnancy mitochondrial DNA copy number (mtDNAcn) and mtDNA methylation with birth size and gestational length. Michigan women ( = 396) provided venous bloodspots at median 11 weeks gestation to quantify mtDNAcn marker NADH-ubiquinone oxidoreductase chain 1 () using real-time quantitative PCR and mtDNA methylation at several regions within four mitochondria-specific genes using pyrosequencing: (mitochondrially encoded tRNA phenylalanine), (D-loop promoter region, heavy strand), (cytochrome b), and (D-loop promoter region, light strand).
View Article and Find Full Text PDFLife (Basel)
November 2024
College of Food Science and Nutritional Engineering, Jilin Agriculture Science and Technology University, Jilin 132101, China.
In this study, we investigated the anti-fatigue effects of black ginseng ginsenosides using exercise performance tests, serum analyses, and gene expression profiling. No significant differences in dietary intake or body weight were observed between groups. The low-dose black ginseng (LBG) group showed no significant improvements in swimming and rotating rod tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!