The effects of serum from patients with acute liver failure on the growth and metabolism of Hep G2 cells.

Artif Organs

Bioengineering Unit, University of Strathclyde, Wolfson Centre, Rottenrow, Glasgow, United Kingdom.

Published: December 1998

In many bioartificial liver systems currently being designed and evaluated for use in fulminant hepatic failure, direct contact is required between the patient's blood and the liver cells in the device. The efficacy of such devices will be influenced by the interaction of fulminant hepatic failure (FHF) patient serum with the cells. We have found that FHF serum inhibits the growth rate and the synthesis of DNA, RNA, and protein; disturbs glutathione homeostasis; and induces morphological changes in cultured human Hep G2 cells. These interactions should influence the design of bioartificial liver devices based on proliferating cell lines and indicate the requirement to pretreat FHF patient plasma to reduce the toxin load.

Download full-text PDF

Source
http://dx.doi.org/10.1046/j.1525-1594.1998.06211.xDOI Listing

Publication Analysis

Top Keywords

hep cells
8
bioartificial liver
8
fulminant hepatic
8
hepatic failure
8
fhf patient
8
effects serum
4
serum patients
4
patients acute
4
liver
4
acute liver
4

Similar Publications

Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).

View Article and Find Full Text PDF

Cholesterol metabolism regulator SREBP2 inhibits HBV replication via suppression of HBx nuclear translocation.

Front Immunol

January 2025

Department of Hepatology, Center for Pathogen Biology and Infectious Diseases, Institute of Translational Medicine, The First Hospital of Jilin University, Changchun, Jilin, China.

The intricate link between cholesterol metabolism and host immune responses is well recognized, but the specific mechanisms by which cholesterol biosynthesis influences hepatitis B virus (HBV) replication remain unclear. In this study, we show that SREBP2, a key regulator of cholesterol metabolism, inhibits HBV replication by interacting directly with the HBx protein, thereby preventing its nuclear translocation. We also found that inhibiting the ER-to-Golgi transport of the SCAP-SREBP2 complex or blocking SREBP2 maturation significantly enhances HBV suppression.

View Article and Find Full Text PDF

Screening, identification, and mechanism of novel antioxidant peptides in walnut meal under aerobic stress.

Food Chem

April 2025

Engineering Research Center of Bio-process, Ministry of Education/Key Laboratory for Agricultural Products Processing of Anhui Province/School of Food and Biological Engineering, Hefei University of Technology, Hefei 230601, China. Electronic address:

Walnut (Juglans regia L.) meal, being the primary by-product of walnut oil processing, is rich in high-quality proteins and of significant potential for development and utilization. The study used multi-stage gradient purification, liquid-quantity chromatography, and computerized virtual screening to isolate and characterize antioxidant peptides from walnut meal.

View Article and Find Full Text PDF

Targeting p38γ synergistically enhances sorafenib-induced cytotoxicity in hepatocellular carcinoma.

Cell Biol Toxicol

January 2025

Division of Abdominal Tumor Multimodality Treatment, Cancer Center and Laboratory of Molecular Targeted Therapy in Oncology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan Province, China.

Sorafenib (Sora) is a first-line treatment for patients with advanced hepatocellular carcinoma (HCC). It can significantly improve the survival rate of patients with advanced HCC, but it is prone to drug resistance during treatment, so the therapeutic effect is extremely limited. Here, we demonstrate that an elevated expression of protein kinase p38γ in hepatocellular carcinoma cells diminishes the tumor cells' sensitivity to Sora.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!