Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Delivery of certain compounds to brain is restricted by the nature of the blood-brain barrier (BBB). Many valuable pharmaceuticals are excluded from the CNS due to hydrophilicity or charge. These limitations have been overcome by numerous methods. One method we use is to take advantage of saturable nutrient transporters located at the barrier. These systems transport hydrophilic and charged nutrients into brain such as choline, a quaternized neurotransmitter precursor. Using knowledge of their substrate specificity, it is possible to deliver agents into brain using these nutrient carriers. In this report, derivatives of lobeline and isoarecolone were evaluated to determine if they may gain access to brain by the blood-brain barrier basic amine transporter using the in situ brain perfusion technique. These compounds do bind the blood-brain barrier basic amine transporter and may enter brain by this transport system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0304-3940(98)00871-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!