Atrial natriuretic peptide and oxytocin induce natriuresis by release of cGMP.

Proc Natl Acad Sci U S A

Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brazil.

Published: January 1999

Our hypothesis is that oxytocin (OT) causes natriuresis by activation of renal NO synthase that releases NO followed by cGMP that mediates the natriuresis. To test this hypothesis, an inhibitor of NO synthase, L-nitroarginine methyl ester (NAME), was injected into male rats. Blockade of NO release by NAME had no effect on natriuresis induced by atrial natriuretic peptide (ANP). This natriuresis presumably is caused by cGMP because ANP also activates guanylyl cyclase, which synthesizes cGMP from GTP. The 18-fold increase in sodium (Na+) excretion induced by OT (1 microgram) was accompanied by an increase in urinary cGMP and preceded by 20 min a 20-fold increase in NO3- excretion. NAME almost completely inhibited OT-induced natriuresis and increased NO3- excretion; however, when the dose of OT was increased 10-fold, a dose that markedly increases plasma ANP concentrations, NAME only partly inhibited the natriuresis. We conclude that the natriuretic action of OT is caused by a dual action: generation of NO leading to increased cGMP and at higher doses release of ANP that also releases cGMP. OT-induced natriuresis is caused mainly by decreased tubular Na+ reabsorption mediated by cGMP. In contrast to ANP that releases cGMP in the renal vessels and the tubules, OT acts on its receptors on NOergic cells demonstrated in the macula densa and proximal tubules to release cGMP that closes Na+ channels. Both ANP- and OT-induced kaliuresis also appear to be mediated by cGMP. We conclude that cGMP mediates natriuresis and kaliuresis induced by both ANP and OT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC15130PMC
http://dx.doi.org/10.1073/pnas.96.1.278DOI Listing

Publication Analysis

Top Keywords

cgmp
12
releases cgmp
12
natriuresis
9
atrial natriuretic
8
natriuretic peptide
8
release cgmp
8
cgmp mediates
8
mediates natriuresis
8
no3- excretion
8
ot-induced natriuresis
8

Similar Publications

Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.

View Article and Find Full Text PDF

Purpose: To investigate the effects of C-type natriuretic peptide (CNP) on human granulosa cell growth and elucidate its regulatory mechanisms.

Methods: A human non-luteinizing granulosa cell line (HGrC) developed from small antral follicles was used to assess the impact of CNP on cell proliferation and estrogen synthesis. cGMP production via the guanylate cyclase domain of the CNP receptor, natriuretic peptide receptor 2 (NPR2), was confirmed.

View Article and Find Full Text PDF

Toll/interleukin-1 receptor-only genes contribute to immune responses in maize.

Plant Physiol

January 2025

The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education; Shandong Key Laboratory of Precision Molecular Crop Design and Breeding; School of Life Sciences, Shandong University, Qingdao 266237, China.

Proteins with Toll/interleukin-1 receptor (TIR) domains are widely distributed in both prokaryotes and eukaryotes, serving as essential components of immune signaling. Although monocots lack the major TIR-nucleotide-binding (NB)-leucine-rich repeat (LRR)-type (TNL) immune receptors, they possess a small number of TIR-only proteins, the function of which remains largely unknown. In the monocot maize (Zea mays), there are three conserved TIR-only genes in the reference genome, namely ZmTIR1 to ZmTIR3.

View Article and Find Full Text PDF

Plant Toll/interleukin-1 receptor (TIR) domains function as NADases and ribosyl-transferases generating second messengers that trigger hypersensitive responses. TIR-X (TX) proteins contain a TIR domain with or without various C-terminal domains and lack the canonical nucleotide-binding site and leucine-rich repeat domain. In a previous study, we identified an Arabidopsis thaliana activation-tagging line with severe growth defects caused by the overexpression of the AtTX12 gene.

View Article and Find Full Text PDF

Transport and action of sesame protein-derived ACE inhibitory peptides ITAPHW and IRPNGL.

Food Chem

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China; School of Food Science and Technology, Nanchang University, No. 235 Nanjing East Road, Nanchang, Jiangxi, 330047, PR China.

Vascular endothelial dysfunction is an important pathogenic factor in hypertension, in which angiotensin-converting enzyme (ACE) plays an important role. Peptides that bind to ACE may attenuate vascular endothelial dysfunction by altering the structure of ACE. This study demonstrated that ITAPHW and IRPNGL were resistant to simulated gastrointestinal fluid and were transported across the Caco-2 monolayer via the intercellular space, with ITAPHW showing a high apparent permeability coefficient of (1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!