Voltage-insensitive gating after charge-neutralizing mutations in the S4 segment of Shaker channels.

J Gen Physiol

Bekesy Laboratory of Neurobiology, Pacific Biomedical Research Center, School of Medicine, University of Hawaii, Honolulu, Hawaii 96822-2359, USA.

Published: January 1999

Shaker channel mutants, in which the first (R362), second (R365), and fourth (R371) basic residues in the S4 segment have been neutralized, are found to pass potassium currents with voltage-insensitive kinetics when expressed in Xenopus oocytes. Single channel recordings clarify that these channels continue to open and close from -160 to +80 mV with a constant opening probability (Po). Although Po is low ( approximately 0.15) in these mutants, mean open time is voltage independent and similar to that of control Shaker channels. Additionally, these mutant channels retain characteristic Shaker channel selectivity, sensitivity to block by 4-aminopyridine, and are partially blocked by external Ca2+ ions at very negative potentials. Furthermore, mean open time is approximately doubled, in both mutant channels and control Shaker channels, when Rb+ is substituted for K+ as the permeant ion species. Such strong similarities between mutant channels and control Shaker channels suggests that the pore region has not been substantially altered by the S4 charge neutralizations. We conclude that single channel kinetics in these mutants may indicate how Shaker channels would behave in the absence of voltage sensor input. Thus, mean open times appear primarily determined by voltage-insensitive transitions close to the open state rather than by voltage sensor movement, even in control, voltage-sensitive Shaker channels. By contrast, the low and voltage-insensitive Po seen in these mutant channels suggests that important determinants of normal channel opening derive from electrostatic coupling between S4 charges and the pore domain.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2222989PMC
http://dx.doi.org/10.1085/jgp.113.1.139DOI Listing

Publication Analysis

Top Keywords

shaker channels
24
mutant channels
16
control shaker
12
channels
11
shaker
8
shaker channel
8
single channel
8
open time
8
channels control
8
channels suggests
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!