Novel dihydroalkoxybenzyloxopyrimidine (S-DABO) derivatives targeting the non-nucleoside inhibitor (NNI) binding site of human immunodeficiency virus (HIV) reverse transcriptase (RT) have been synthesized using a novel computer model for the NNI binding pocket and tested for their RT inhibitory activity in cell-free assays using purified recombinant HIV RT as well as for their anti-HIV activity in HTL VIIIB-infected peripheral blood mononuclear cells. Our computational approach allowed the identification of several ligand derivatization sites for the generation of more potent S-DABO derivatives. Our lead S-DABO derivative, 5-isopropyl-2-[(methylthiomethyl)thio]-6-(benzyl)-pyrimidin-4-(1H)-one (compound 3), elicited potent anti-HIV activity with an IC50 value of less than 1nM for inhibition of HIV replication without any evidence of cytotoxicity and an unprecedented selectivity index of > 100,000.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0960-894x(98)00250-9DOI Listing

Publication Analysis

Top Keywords

reverse transcriptase
8
s-dabo derivatives
8
nni binding
8
anti-hiv activity
8
5-alkyl-2-[methylthiomethylthio]-6-benzyl-pyrimidin-4-1h-ones potent
4
potent non-nucleoside
4
non-nucleoside reverse
4
transcriptase inhibitors
4
s-dabo
4
inhibitors s-dabo
4

Similar Publications

Introduction: The coronavirus disease 2019 (COVID-19) pandemic has significantly impacted public transportation systems worldwide. In this study, we evaluated the rate of COVID-19 positivity and its associated factors among users of public transportation in socioeconomically disadvantaged regions of Brazil during the pre-vaccination phase of the pandemic.

Methodology: This ecological study, conducted in Aracaju city in Northeast Brazil, is a component of the TestAju Program.

View Article and Find Full Text PDF

Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.

View Article and Find Full Text PDF

Telomerase in cancer- ongoing quest and future discoveries.

Mol Biol Rep

January 2025

Department of Integrative Biology, School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.

Telomerase, constituted by the dynamic duo of telomerase reverse transcriptase (TERT), the catalytic entity, and an integral RNA component (TERC), is predominantly suppressed in differentiated human cells due to postnatal transcriptional repression of the TERT gene. Dysregulation of telomerase significantly contributes to cancer development via telomere-dependent and independent mechanisms. Telomerase activity is often elevated in advanced cancers, with TERT reactivation and upregulation of TERC observed in early tumorigenesis.

View Article and Find Full Text PDF

This study investigates the relationship between SARS-CoV-2 RT-PCR cycle threshold (Ct) values and key COVID-19 transmission and outcome metrics across five years of the pandemic in Jalisco, Mexico. Utilizing a comprehensive time-series analysis, we evaluated weekly median Ct values as proxies for viral load and their temporal associations with positivity rates, reproduction numbers (Rt), hospitalizations, and mortality. Cross-correlation and lagged regression analyses revealed significant lead-lag relationships, with declining Ct values consistently preceding surges in positivity rates and hospitalizations, particularly during the early phases of the pandemic.

View Article and Find Full Text PDF

Islatravir (ISL) is a novel antiretroviral that inhibits HIV-1 reverse transcriptase translocation. The M184V mutation, known to reduce ISL's viral susceptibility in vitro, could arise from prolonged exposure to nucleoside reverse transcriptase inhibitors (NRTI) (3TC). This study evaluated the predictive efficacy of ISL and identified potentially active antiretrovirals in combination among treatment-experienced patients in Cameroon, where NRTIs (3TC) have been the backbone of ART for decades now.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!