Extensive aneuploid analyses had shown the existence of a few haplolethal (HL) regions and one triplolethal region in the genome of Drosophila melanogaster. Since then, only two haplolethals, 22F1-2 and 16F, have been directly linked to identified genes, dpp and wupA, respectively. However, with the possible exception of dpp, the actual bases for this dosage sensitivity remain unknown. We have generated and characterized dominant-lethal mutations and chromosomal rearrangements in 16F and studied them in relation to the genes in the region. This region extends along 100 kb and includes at least 14 genes. The normal HL function depends on the integrity of a critical 4-kb window of mostly noncoding sequences within the wupA transcription unit that encodes the muscle protein troponin I (TNI). All dominant lethals are breakpoints within that window, which prevent the functional expression of TNI and other adjacent genes in the proximal direction. However, independent mutations in these genes result in recessive lethal phenotypes only. We propose that the HL at 16F represents a long-range cis regulatory region that acts upon a number of functionally related genes whose combined haploidy would yield the dominant-lethal effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1460474 | PMC |
http://dx.doi.org/10.1093/genetics/151.1.163 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!