Conversion of the highly surface-active subtype of pulmonary surfactant known as large surfactant aggregates (LA) to small aggregates (SA) with poor surface activity has recently been shown to occur upon cyclic changes of the air-liquid interface area in vitro. By subjecting pooled rabbit bronchoalveolar lavage fluid (BALF) to this maneuver, we found that conversion of LA to SA was accompanied by a marked decline in the ability of the remaining LA fraction to reduce surface tension by adsorption and during film compression on a pulsating bubble surfactometer. SA obtained by centrifugation of noncycled rabbit BALF had a similar phospholipid (PL) but different neutral lipid (NL) composition than did the LA. Upon cycling, the increased formation of SA obliterated this difference. No substantial difference in the PL, NL, or fatty acid profile of LA was noted before and after cycling. In contrast, the content of surfactant apoprotein-B (SP-B) in the LA decreased dramatically to nearly undetectable levels during the cycling maneuver, and this decline in SP-B content was closely correlated with the decrease in proportional appearance of LA and loss of surface activity of this fraction. Reconstitution of LA with intact SP-B after cycling virtually fully restored the surface activity of this surfactant subtype. When comparing lavage samples from adults with acute respiratory distress syndrome (ARDS; n = 10) with samples from healthy controls (n = 11), we noted a marked reduction of SP-B in the LA fraction. There was a significant correlation between the SP-B content of the LA fraction and the relative percentage of LA in BALF or the lower surface activity of this surfactant subtype. We conclude that an SP-B-related loss of LA integrity and function may substantially contribute to the decline of this surfactant subtype and the loss of its surface activity during cycling in vitro and in clinical ARDS.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1164/ajrccm.159.1.9612005 | DOI Listing |
Dalton Trans
January 2025
Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa km 7.5, 07122 Palma de Mallorca, Baleares, Spain.
This perpective delves into the emerging field of matere bonds, a novel type of noncovalent interaction involving group 7 elements such as manganese, technetium, and rhenium. Matere bonds, a new member of the σ-hole family where metal atoms act as electron acceptors, have been shown experimentally and theoretically to play significant roles in the self-assembly and stabilization of supramolecular structures both in solid-state and solution-phase environments. This perspective article explores the physical nature of these interactions, emphasizing their directionality and structural influence in various supramolecular architectures.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory of Chemical Resource Engineering, College of Chemistry, Beijing University of Chemical Technology, Beijing, 100029, China.
New carbon-based materials (CMs) are recommended as attractively active materials due to their diverse nanostructures and unique electron transport pathways, demonstrating great potential for highly efficient energy storage applications, electrocatalysis, and beyond. Among these newly reported CMs, metal-organic framework (MOF)-derived CMs have achieved impressive development momentum based on their high specific surface areas, tunable porosity, and flexible structural-functional integration. However, obstacles regarding the integrity of porous structures, the complexity of preparation processes, and the precise control of active components hinder the regulation of precise interface engineering in CMs.
View Article and Find Full Text PDFOncol Rep
March 2025
Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan, R.O.C.
Epidermal growth factor (EGF) binds with its surface receptor to stimulate gene expression and cancer cell proliferation. EGF stimulates cancer cell growth via phosphoinositide 3‑kinase (PI3K) and programmed cell death ligand 1 (PD‑L1) pathways. As an integrin αvβ3 antagonist, heteronemin exhibits potent cytotoxic effects against cancer cells.
View Article and Find Full Text PDFNatl Sci Rev
December 2024
Aix Marseille Univ, CEA, CNRS, Institute of Bioscience and Biotechnology of Aix Marseille, BIAM, Saint-Paul-Lez-Durance 13108, France.
Lipid droplets (LDs) are the major sites of lipid and energy homeostasis. However, few LD biogenesis proteins have been identified. Using model microalga , we show that ABHD1, an α/β-hydrolase domain-containing protein, is localized to the LD surface and stimulates LD formation through two actions: one enzymatic and one structural.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University, Hamedan, Iran.
This study introduces a new nano catalyst tailored for the eco-friendly synthesis of pyrido[2,3-]pyrimidine via a three-component one-pot reaction involving benzaldehydes, malononitrile, and uracil. To achieve this objective, we anchored copper acetate onto the surface of layered double hydroxides modified with 1,3‑benzenedisulfonyl amide (BDSA) (LDH@PTRMS@BDSA@Cu(NO)), which exhibited remarkable activity and selectivity. The main benefits of this method include high product yield, swift reaction times, straightforward purification, catalyst reusability, and the employment of a mild reaction process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!