GABA (gamma-aminobutyric acid) is the main inhibitory neurotransmitter in the mammalian central nervous system, where it exerts its effects through ionotropic (GABA(A/C)) receptors to produce fast synaptic inhibition and metabotropic (GABA(B)) receptors to produce slow, prolonged inhibitory signals. The gene encoding a GABA(B) receptor (GABA(B)R1) has been cloned; however, when expressed in mammalian cells this receptor is retained as an immature glycoprotein on intracellular membranes and exhibits low affinity for agonists compared with the endogenous receptor on brain membranes. Here we report the cloning of a complementary DNA encoding a new subtype of the GABAB receptor (GABA(B)R2), which we identified by mining expressed-sequence-tag databases. Yeast two-hybrid screening showed that this new GABA(B)R2-receptor subtype forms heterodimers with GABA(B)R1 through an interaction at their intracellular carboxy-terminal tails. Upon expression with GABA(B)R2 in HEK293T cells, GABA(B)R1 is terminally glycosylated and expressed at the cell surface. Co-expression of the two receptors produces a fully functional GABA(B) receptor at the cell surface; this receptor binds GABA with a high affinity equivalent to that of the endogenous brain receptor. These results indicate that, in vivo, functional brain GABA(B) receptors may be heterodimers composed of GABA(B)R1 and GABA(B)R2.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/25354 | DOI Listing |
Drug Res (Stuttg)
January 2025
Department of Physiology, School of Medicine, Arak University of Medical Sciences, Arak, Iran.
Tolerance to the antinociceptive effects of opioids is a major concern. Studies have shown that chronic use of non-steroidal anti-inflammatory (NSAIDs) causes significant tolerance and cross-tolerance to morphine. Chronic NSAIDs use can increase the risk of certain diseases, such as peptic ulcers, and exacerbate others, like heart failure.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Neurosciences and Psychiatry, University of Toledo College of Medicine and Life Sciences, Toledo, Ohio.
The medial habenula (MHb)-interpeduncular nucleus (IPN) pathway plays an important role in information transferring between the forebrain and the midbrain. The MHb-IPN pathway has been implicated in the regulation of fear behavior and nicotine addiction. The synapses between the ventral MHb and the IPN show a unique property, i.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
January 2025
Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Punjab, India.
Neuropathic pain, a challenging condition often associated with diabetes, trauma, or chemotherapy, impairs patients' quality of life. Current treatments often provide inconsistent relief and notable adverse effects, highlighting the urgent need for safer and more effective alternatives. This review investigates marine-derived bioactive compounds as potential novel therapies for neuropathic pain management.
View Article and Find Full Text PDFSci Rep
January 2025
Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057, Zurich, Switzerland.
GABA receptors mediate prolonged inhibition in the brain and are important for keeping neuronal excitation and inhibition in a healthy balance. However, under excitotoxic/ischemic conditions, GABA receptors are downregulated by dysregulated endocytic trafficking and can no longer counteract the severely enhanced excitation, eventually triggering neuronal death. Recently, we developed interfering peptides targeting protein-protein interactions involved in downregulating the receptors.
View Article and Find Full Text PDFChildren (Basel)
December 2024
Division of Pediatric Neurology, Department of Neurology, The Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
Infantile spasms are common in Down Syndrome (DS), but the mechanisms by which DS predisposes to this devastating epilepsy syndrome are unclear. In general, neuronal excitability and therefore seizure predisposition results from an imbalance of excitation over inhibition in neurons and neural networks of the brain. Animal models provide clues to mechanisms and thereby provide potential therapeutic approaches.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!