An improved analytical method for passive air sampling is presented based on a combination of commercially available diffusive samplers with headspace solid-phase microextraction and high-resolution gas chromatography with flame ionization detection (HRGC-FID). This procedure is targeted for short-term BTEX (benzene, toluene, ethylbenzene and o-, m- and p-xylenes) determinations at environmental concentrations and can be applied for sampling intervals between 30 min and 24 h. The analytes are adsorbed onto the charcoal pad of a passive sampler and then extracted with carbon disulphide-methanol. After removal of the carbon disulphide by xanthation, the BTEXs are enriched on a Carboxen SPME fiber, thermally desorbed and analysed by HRGC-FID. Detection limits for a sampling interval of 2 h are between 0.4 and 2 micrograms/m3, within-series precision ranges between 6.6 and 12.8%, day-to-day precision is between 11.1 and 15.2%. The results obtained with this procedure are validated by comparison with active sampling. Detection limits and a further reduction of the sampling time are limited by blanks of the chemicals and the diffusive samplers. Procedures to eliminate these blanks are described in detail. Applications such as the determination of BTEXs in indoor air inside buildings, inside a train and a car are presented, indicating the usefulness of the described procedure for short-term measurements of environmental BTEX concentrations. An advantage of passive samplers is the storage stability for at least six months, which is essential for its use in large epidemiological studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9673(98)00736-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!