Calcium influx activates extracellular-regulated kinase/mitogen-activated protein kinase pathway through a calmodulin-sensitive mechanism in PC12 cells.

J Biol Chem

Grup de Neurobiologia Molecular, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Universitat de Lleida, 25198 Lleida, Catalonia, Spain.

Published: January 1999

Evidence suggests that membrane depolarization is able to promote neuronal survival through a sustained, although moderate, increase in the intracellular calcium. We have used the PC12 cell line to study the possible intracellular pathways that can be activated by calcium influx. Previously, we observed that membrane depolarization-induced calcium influx was able to activate the extracellular-regulated kinase (ERK)/mitogen-activated protein kinase pathway and most of this activation was calmodulin-dependent. We demonstrated that a part of the ERK activation is due to the phosphorylation of the epidermal growth factor receptor. Here, we show that both the epidermal growth factor receptor phosphorylation and the Shc-Grb2-Ras activation are not calmodulin-modulated. Moreover, dominant negative mutant Ha-ras (Asn-17) prevents the activation on ERKs by membrane depolarization, suggesting that Ras and calmodulin are both necessaries to activate ERKs by membrane depolarization. We failed to observe any significant induction and/or modulation of the A-Raf, B-Raf or c-Raf-1 kinase activities, thus suggesting the existence of a MEK kinase different from the classical Raf kinases that directly or indirectly can be modulated by Ca2+/calmodulin.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.274.1.75DOI Listing

Publication Analysis

Top Keywords

calcium influx
12
membrane depolarization
12
protein kinase
8
kinase pathway
8
epidermal growth
8
growth factor
8
factor receptor
8
erks membrane
8
kinase
5
calcium
4

Similar Publications

Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how these theoretically-derived rules relate to biological mechanisms of plasticity in the brain, or how these different rules might be mechanistically implemented in different contexts and brain regions. This study shows that the calcium control hypothesis, which relates synaptic plasticity in the brain to the calcium concentration ([Ca2+]) in dendritic spines, can produce a diverse array of learning rules.

View Article and Find Full Text PDF

Reactive oxygen species (ROS) produced by NADPH oxidase promote contraction of peripheral arteries, which is especially pronounced in early postnatal period in comparison to adulthood, but the mechanisms of such vasomotor influence are poorly understood. We tested the hypothesis that Rho-kinase and protein kinase C (PKC) mediate procontractile influence of NADPH oxidase derived ROS in peripheral artery of early postnatal rats. In addition, we evaluated the involvement Src-kinase and L-type voltage-gated Ca channels (LTCC) into procontractile influence of ROS, produced by NADPH oxidase, because of their known interplay with Rho-kinase and PKC pathways.

View Article and Find Full Text PDF

Activation of the brain-penetrant beta3-adrenergic receptor (Adrb3) is implicated in the treatment of depressive disorders. Enhancing GABAergic inputs from interneurons onto pyramidal cells of prefrontal cortex (PFC) represents a strategy for antidepressant therapies. Here, we probed the effects of the activation of Adrb3 on GABAergic transmission onto pyramidal neurons in the PFC using in vitro electrophysiology.

View Article and Find Full Text PDF

Objectives: Mitochondrial Ca uniporter (MCU) provides a Ca influx pathway from the cytosol into the mitochondrial matrix and a moderate mitochondrial Ca rise stimulates ATP production and cell growth. MCU is highly expressed in various cancer cells including breast cancer cells, thereby increasing the capacity of mitochondrial Ca uptake, ATP production, and cancer cell proliferation. The objective of this study was to examine MCU inhibition as an anti-cancer mechanism.

View Article and Find Full Text PDF

Nuclear calcium signaling in D1 receptor-expressing neurons of the nucleus accumbens regulates molecular, cellular and behavioral adaptations to cocaine.

Biol Psychiatry

January 2025

Institute of Biology Paris-Seine, laboratory Neuroscience Paris-Seine, CNRS, INSERM, Sorbonne Université, UPMC Université Paris 06 F-75005, Paris, France. Electronic address:

Background: The persistence of cocaine-evoked adaptations relies on gene regulations within the reward circuit, especially in the ventral striatum (i.e., nucleus accumbens (NAc)).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!