The presence of desmin is used to identify the Ito cells in rat liver and to evaluate the purity of separated and cultured cells. The present study was conducted to evaluate the expression of cytoskeletal (with special emphasis on desmin) and intercellular matrix proteins in cultured rat liver Ito cells. The Ito cells were isolated by enzymatic digestion of rat liver and purified by single-step Nycodenz gradient. During the first week of culturing, the Ito cells proliferated and all of them expressed desmin and vimentin. By the end of the first week, part of them were seen to transdifferentiate into myofibroblasts. These cells expressed alpha-smooth muscle actin. The Ito cells and myofibroblasts were stained with anti-laminin, and anti-collagen I and III antibodies. The expression of desmin in myofibroblasts was less than in untransformed (stellate shaped) Ito cells. By the end of the second week the cells developed a dense monolayer and lost desmin. We suggest that repression of desmin in the cablestone-like monolayer of cells may be due to cell-to-cell contact inhibition.

Download full-text PDF

Source

Publication Analysis

Top Keywords

ito cells
28
rat liver
16
cells
11
liver ito
8
desmin
7
ito
7
[contact inhibition
4
inhibition desmin
4
desmin expression
4
rat
4

Similar Publications

The tunability of the energy bandgap in the near-infrared (NIR) range uniquely positions colloidal lead sulfide (PbS) quantum dots (QDs) as a versatile material to enhance the performance of existing perovskite and silicon solar cells in tandem architectures. The desired narrow bandgap (NBG) PbS QDs exhibit polar (111) and nonpolar (100) terminal facets, making effective surface passivation through ligand engineering highly challenging. Despite recent breakthroughs in surface ligand engineering, NBG PbS QDs suffer from uncontrolled agglomeration in solid films, leading to increased energy disorder and trap formation.

View Article and Find Full Text PDF

Carbazole-derived self-assembled monolayers (SAMs) are promising materials for hole-extraction layer (HEL) in conventional organic photovoltaics (OPVs). Here, a SAM Cbz-2Ph derived from 3,6-diphenylcarbazole is demonstrated. The large molecular dipole moment of Cbz-2Ph allows the modulation of electrode work function to facilitate hole extraction and maximize photovoltage, thus improving the OPV performance.

View Article and Find Full Text PDF

Ginsenoside, a potential natural product against liver diseases: a comprehensive review from molecular mechanisms to application.

Crit Rev Food Sci Nutr

January 2025

Shaanxi Key Laboratory of Degradable Biomedical Materials, Shaanxi R&D Center of Biomaterials and Fermentation Engineering, Biotech & Biomed Research Institute, School of Chemical Engineering, Northwest University, Xi'an, China.

Liver disease constitutes a significant cause of global mortality, with its pathogenesis being multifaceted. Identifying effective pharmacological and preventive strategies is imperative for liver protection. Ginsenosides, the major bioactive compounds found in ginseng, exhibit multiple pharmacological activities including protection against liver-related diseases by mitigating liver fat accumulation and inflammation, preventing hepatic fibrosis, and exerting anti-hepatocarcinogenic effects.

View Article and Find Full Text PDF

Obesity due to excessive body fat accumulation remains a global problem. Patients with obesity have high cortisol levels, and its dysregulation is caused by increased 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) levels. The effects and mechanism of J2H-1702, an 11β-HSD1 inhibitor, on nonalcoholic steatohepatitis (NASH) were explored.

View Article and Find Full Text PDF

Metal-based mesoporous polydopamine with dual enzyme-like activity as biomimetic nanodrug for alleviating liver fibrosis.

J Colloid Interface Sci

January 2025

Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China. Electronic address:

Liver fibrosis is a common pathological stage in the development of several chronic liver diseases, and early intervention can effectively reverse the developing process. Excessive reactive oxygen species (ROS) can promote the activation of hepatic stellate cells (HSCs), but existing treatments have not addressed this problem. In this study, different metal-based mesoporous polydopamine (MPDA) was prepared by the soft template method, and their free radical scavenging abilities, as well as the efficacy and safety of the carriers were investigated, so as to select Cu-coordinated MPDA (CMP) as the optimal nanocarrier.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!