The gene coding for the immunity protein (mceB) and the structural gene of microcin E492 (mceA), a low-molecular-weight channel-forming bacteriocin produced by a strain of Klebsiella pneumoniae, have been characterized. The microcin gene codes for a precursor protein of either 99 or 103 amino acids. Protein sequencing of the N-terminal region of microcin E492 unequivocally identified this gene as the microcin structural gene and indicated that this microcin is synthesized as a precursor protein that is cleaved at either amino acid 15 or 19, at a site resembling the double-glycine motif. The gene encoding the 95-amino-acid immunity protein (mceB) was identified by cloning the DNA segment that encodes only this polypeptide into an expression vector and demonstrating the acquisition of immunity to microcin E492. As expected, the immunity protein was found to be associated with the inner membrane. Analysis of the DNA sequence indicates that these genes belong to the same family as microcin 24, and they do not share structural motifs with any other known channel-forming bacteriocin. The organization of the microcin- and immunity protein-encoding genes suggests that they are coordinately expressed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC103551 | PMC |
http://dx.doi.org/10.1128/JB.181.1.212-217.1999 | DOI Listing |
ISME J
January 2024
Infectious Diseases Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, 5 Science Drive 2, MD4, Level 2, Singapore 117545, Republic of Singapore.
The hypervirulent lineages of Klebsiella pneumoniae (HvKp) cause invasive infections such as Klebsiella-liver abscess. Invasive infection often occurs after initial colonization of the host gastrointestinal tract by HvKp. Over 80% of HvKp isolates belong to the clonal group 23 sublineage I that has acquired genomic islands (GIs) GIE492 and ICEKp10.
View Article and Find Full Text PDFMicrob Genom
February 2024
Food Science Department, Food and Agriculture Faculty, Laval University, Quebec, Canada.
Molecules
October 2023
Grupo de Microbiología Integrativa, Laboratorio de Biología Estructural y Molecular BEM, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425 Ñuñoa, Santiago 7800003, Chile.
Microcin E492 (MccE492) is an antimicrobial peptide and proposed virulence factor produced by some strains, which, under certain conditions, form amyloid fibers, leading to the loss of its antibacterial activity. Although this protein has been characterized as a model functional amyloid, the secondary structure transitions behind its formation, and the possible effect of molecules that inhibit this process, have not been investigated. In this study, we examined the ability of the green tea flavonoid epigallocatechin gallate (EGCG) to interfere with MccE492 amyloid formation.
View Article and Find Full Text PDFMicrobiol Spectr
June 2023
Department of Bacteriology, Hiroshima University Graduate School of Biomedical and Health Sciences, Hiroshima, Japan.
Klebsiella pneumoniae produces several kinds of bacteriocins that have antimicrobial effects against closely related species, but few studies have comprehensively reported bacteriocin distribution among the Klebsiella population. In this study, we identified bacteriocin genes in 180 K. pneumoniae species complex genomes, including 170 hypermucoviscous isolates, and investigated the antibacterial activity against 50 strains, including antimicrobial-resistant organisms, belonging to multiple species, namely, Klebsiella spp.
View Article and Find Full Text PDFMethods Mol Biol
August 2022
Laboratorio de Biología Estructural y Molecular BEM, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile.
Bacterial functional amyloids are remarkable examples of how amyloid aggregation can be kept under control and even leveraged to perform diverse biological processes. In this context, it is highly relevant to understand how amyloidogenesis is modulated by relevant factors, including key amino acids promoting or preventing aggregation. This chapter describes a methodology to identify critical residues for amyloid formation in bacterial proteins, based on mutant construction guided by bioinformatics prediction, their expression in bacteria, and their analysis by flow cytometry.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!