Protein mobility in the cytoplasm of Escherichia coli.

J Bacteriol

Departments of Physics, Princeton University, Princeton, New Jersey 08544,

Published: January 1999

The rate of protein diffusion in bacterial cytoplasm may constrain a variety of cellular functions and limit the rates of many biochemical reactions in vivo. In this paper, we report noninvasive measurements of the apparent diffusion coefficient of green fluorescent protein (GFP) in the cytoplasm of Escherichia coli. These measurements were made in two ways: by photobleaching of GFP fluorescence and by photoactivation of a red-emitting fluorescent state of GFP (M. B. Elowitz, M. G. Surette, P. E. Wolf, J. Stock, and S. Leibler, Curr. Biol. 7:809-812, 1997). The apparent diffusion coefficient, Da, of GFP in E. coli DH5alpha was found to be 7.7 +/- 2.5 microm2/s. A 72-kDa fusion protein composed of GFP and a cytoplasmically localized maltose binding protein domain moves more slowly, with Da of 2.5 +/- 0.6 microm2/s. In addition, GFP mobility can depend strongly on at least two factors: first, Da is reduced to 3.6 +/- 0.7 microm2/s at high levels of GFP expression; second, the addition to GFP of a small tag consisting of six histidine residues reduces Da to 4.0 +/- 2.0 microm2/s. Thus, a single effective cytoplasmic viscosity cannot explain all values of Da reported here. These measurements have implications for the understanding of intracellular biochemical networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC103549PMC
http://dx.doi.org/10.1128/JB.181.1.197-203.1999DOI Listing

Publication Analysis

Top Keywords

+/- microm2/s
16
cytoplasm escherichia
8
escherichia coli
8
apparent diffusion
8
diffusion coefficient
8
gfp
8
addition gfp
8
protein
5
protein mobility
4
mobility cytoplasm
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!