The recognition of mammalian genes encoded within a mouse yeast artificial chromosome (YAC) by the yeast transcription and RNA processing machinery was investigated. Transcripts from five genes known to be encoded by the YAC were all found in the total yeast RNA. Of 12 mouse introns assayed, six were correctly spliced by the yeast. However, an abnormal transcription of mouse DNA was also observed. Three genes of three tested were transcribed both from their sense and antisense strands and all tested microsatellite, inter-repetitive and anonymous mouse loci were detected in the YAC clone RNA. An RNA transcript from a well defined intergenic region of two head-to-head oriented mouse genes was detected by RT-PCR and by RNase protection assay. These results indicate the presence of multiple yeast-specific transcription sites in the mouse DNA. 3' RACE experiments demonstrated the inability of the yeast to use the mouse polyadenylation signals. Thus, a method for isolation of mammalian exons based on a YAC clone RNA is likely to produce a high background, because the enrichment with mammalian exons in the YAC RNA is low. Nevertheless, YAC clones can serve as in vivo test tubes to study the conservation of RNA processing sequences.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC148210 | PMC |
http://dx.doi.org/10.1093/nar/27.2.526 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!