A rational, chemical, synthetic effort to identify promising low-affinity uncompetitive N-methyl-D-aspartic acid receptor antagonists for use as antiepileptic drugs led to the discovery of AR-R 15035AR, or [RS]-alpha-phenyl-2-pyridine-ethanamine.2HCl. Chiral separation followed by intensive in vivo screening resulted in the selection of the [S] enantiomer, AR-R 15896AR, as the best compound for further preclinical development. AR-R 15896AR prevented tonic seizures in rodents for up to 6 to 8 h in response to maximal electroshock (MES), 4-aminopyridine, bicuculline, or strychnine, as well as characteristic seizures following injections of N-methyl-DL-aspartic or kainic acids. AR-R 15896AR was ineffective in two kindling models of epilepsy, did not produce tolerance to MES, and was devoid of proconvulsant and phencyclidine-like properties in mice and rats, respectively. Therapeutic indices for AR-R 15896AR were comparable to or exceeded those for standard anticonvulsants. Orally administered AR-R 15896AR rapidly entered the rat brain and was eliminated in parallel from the plasma and plasma-free compartment. A dose-response relationship between plasma and brain levels after p.o. or i.v. administration of AR-R 15896AR and protection against MES was highly correlative. The time course for loss of protection against MES mirrored the elimination of the compound from brain and plasma. The total brain concentration (25 microM) of drug at the ED50 value (approximately 3 mg/kg) for protection against MES seizures was consistent with the reported affinity of AR-R 15896AR at the N-methyl-D- aspartic acid binding site (IC50 value = 1.3 microM). The present findings demonstrated the attractiveness of AR-R 15896AR as a candidate for further development to treat epilepsy.
Download full-text PDF |
Source |
---|
Stroke
October 2006
Department of Neurology, Medical College of Georgia, Augusta, GA, USA.
Brain Res
October 2006
Pharmacology Research Group, Leicester School of Pharmacy, De Montfort University, Leicester, LE1 9BH, UK.
We tested whether glutamate receptor ligands affect oxygen-glucose deprivation-evoked L-glutamate efflux from adult rat cerebrocortical prisms. The uncompetitive NMDA antagonist AR-R15896AR inhibited efflux (IC50 34 microM, 87% maximal inhibition). AMPA/kainate receptor blockade (NBQX, 100 microM) or Group II metabotropic glutamate receptor activation (DCG-IV, 10 microM) inhibited efflux (41%, 67% respectively) but Group I mGluR blockade (CPCCOEt/MPEP, 10 microM) was without effect.
View Article and Find Full Text PDFJ Sleep Res
June 2005
Sleep Laboratory, Department of Allergology and Pulmonary Medicine, Sahlgrenska University Hospital, Göteborg, Sweden.
Hypoxemia is a powerful stimulus of glutamate release in the central nervous system (CNS) and a hallmark phenomenon in sleep disordered breathing (SDB). Glutamate effects that include neuronal damage and apoptosis following hypoxemia and apnea following microinjections in animal models are in part mediated via postjunctional N-methyl-D-aspartate (NMDA) receptors. This was a double blind, randomized, placebo-controlled single dose cross-over study of the NMDA receptor antagonist AR-R15896AR in 15 male patients with moderate to severe SDB.
View Article and Find Full Text PDFBrain Res
May 2003
MRC Comparative Cognition Team, Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, UK.
Three experimental neuroprotective agents (clomethiazole, AR-R15896AR and NXY-059) have recently been tested in a primate model of acute ischaemic stroke. As the experimental techniques used in all three studies were similar and the compounds were administered at clinically relevant doses, a comparative analysis of the functional benefits of these drug-treatments has now been performed. Furthermore a more detailed histological analysis of the neuroprotection afforded by the drugs has also been made.
View Article and Find Full Text PDFILAR J
May 2003
Department of Experimental Psychology, University of Cambridge, Downing Street, Cambridge, UK.
The Stroke Therapy Academic Industry Roundtable noted the need for standardized, well-accepted primate models of stroke to help develop both neuroprotective and restorative therapies. One primate model has been developed using the marmoset, a small New World species of monkey, in which long-term functional deficits can be assessed. The surgery and postoperative care of the animals is described, as well as the behavioral tests used to quantify the postoperative disability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!