A functional role for stimulated nitric oxide (NO) production was tested in the TCR-triggered death of mature T lymphocytes. In purified peripheral human T cell blasts or the 2B4 murine T cell hybridoma, apoptotic cell death induced by immobilized anti-CD3 was blocked by inhibitors of NO synthase (NOS) in a stereospecific and concentration-dependent manner. This effect appeared to be selective since apoptotic death induced by anti-Fas Ab or the steroid dexamethasone was not affected by NOS inhibitors. TCR-stimulated expression of functional Fas ligand was attenuated in a stereospecific manner by NOS inhibitors, but these compounds did not inhibit TCR-stimulated IL-2 secretion or CD69 surface expression. Nitrosylated tyrosines, a stable marker for NO generation, were immunochemically detected in T cells using flow cytometry. TCR signals induced NO production, as measured by an increase in nitrotyrosine-specific staining. NOS enzymatic activity was detected in lysates of 2B4 cells, and Western blot analysis suggests that the activity is due to expression of the neuronal isoform of NOS. Thus, T cells have the capacity to generate NO upon Ag signaling, which may affect signal transduction, Fas ligand surface expression, and apoptotic cell death of mature T lymphocytes.
Download full-text PDF |
Source |
---|
Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Federal University of Technology Akure, Ondo State, Akure, Nigeria.
Background: The effect of high consumption of psychoactive substances of codeine (CDE), tramadol (TMD), and Cannabis sativa (CNB) as concoction has been associated with altered brain cognitive and neurochemical functions. However, the understanding of the complex mechanism behind the intake of Cannabis sativa co-administration with tramadol and codeine on both cardiac and brain function, neurotransmitters, purinergic, and antioxidant enzymes activities in the brain and heart of rats remains unreported.
Method: The measure of cognition using morris water maze (MWM) and Y-maze tests, hemodynamic parameters namely systolic blood pressure (SBP) and heart rate (HR), acetylcholinesterase (AChE), butyl-cholinesterase (BCHE), adenosine deaminase (ADA), arginase, catalase (CAT), superoxide dismutase (SOD) enzymes' activities, reduced glutathione (GSH) and malondialdehyde (MDA), nitric oxide (NO) levels, in the brain and heart of CNB, TMD, and CDE exposed rats was done.
Angew Chem Int Ed Engl
January 2025
University of Science and Technology of China, Department of Polymer Science and Engineering, 96 Jinzhai Road, 230026, , 230026, Hefei, CHINA.
Understanding the interplay between gasotransmitters is essential for unlocking their therapeutic potential. However, achieving spatiotemporally controlled co-delivery to target cells remains a significant challenge. Herein, we propose an innovative strategy for the intracellular co-delivery of carbon monoxide (CO) and nitric oxide (NO) gasotransmitters under clinically relevant wavelengths.
View Article and Find Full Text PDFCurr Pharm Biotechnol
January 2025
Department of Clinical Oncology, Queen Elizabeth Hospital, Hong Kong SAR, China.
Introduction: Iron oxide nanozyme was synthesized from the fruit peel extract of pomegranate, which served as a reducing agent during the green synthesis. The scavenging of reactive oxygen species is often accompanied by immunomodulation following antiproliferative effects due to the crosstalk between the proteins involved in the inter-related signaling pathways.
Method: In the current study, the green synthesized nanozyme was studied for its ability to induce apoptosis in breast cancer cell lines.
Redox Biochem Chem
December 2024
Department of Biophysics, Medical College of Wisconsin, Milwaukee, United States.
Peroxynitrite (ONOO/ONOOH) is a short-lived but highly reactive species that is formed in the diffusion-controlled reaction between nitric oxide and the superoxide radical anion. It can oxidize certain biomolecules and has been considered as a key cellular oxidant formed under various pathophysiological conditions. It is crucial to selectively detect and quantify ONOO to determine its role in biological processes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!