Biotin synthase mechanism: on the origin of sulphur.

FEBS Lett

Laboratoire de Chimie Organique Biologique, Université Paris VI-CNRS UMR 7613, France.

Published: November 1998

Biotin synthase catalyses the last step of the biosynthesis of biotin in microorganisms and plants. The active protein isolated from Bacillus sphaericus and Escherichia coli contains an iron-sulphur (FeS) cluster. The native enzymes were depleted of their iron and inorganic sulphide and the resulting apoenzymes were chemically reconstituted with FeCl3 and Na2[34S] to give labelled (Fe34S) enzymes. These enzymes were functional and when assayed in vitro produced labelled biotin containing about 65% of 34S. These data strongly support the hypothesis that the sulphur of biotin is derived from the (FeS) centre of the enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/s0014-5793(98)01464-1DOI Listing

Publication Analysis

Top Keywords

biotin synthase
8
sulphur biotin
8
biotin
5
synthase mechanism
4
mechanism origin
4
origin sulphur
4
synthase catalyses
4
catalyses step
4
step biosynthesis
4
biosynthesis biotin
4

Similar Publications

Mycobacidin is an antitubercular antibiotic structurally composed of a sulfur-containing 4-thiazolidinone ring, yet its biosynthesis including the mechanism of sulfur incorporation has remained an open question since its discovery in 1952. In this study, the mycobacidin biosynthetic gene cluster is identified from soil-dwelling , and the corresponding biosynthetic pathway starting with 7-oxoheptanoate is characterized. The radical SAM enzyme MybB catalyzes two sulfur insertion reactions, thereby bridging C and C to complete the 4-thiazolidinone heterocycle as the final step in mycobacidin maturation.

View Article and Find Full Text PDF
Article Synopsis
  • Helicobacter pylori is a type 1 carcinogen linked to gastric ulcers and cancer, and research by the Seattle Structural Genomics Center for Infectious Disease focuses on potential treatments targeting this bacterium.
  • The study reports on the purification and crystallization of H. pylori biotin protein ligase (HpBPL), an enzyme that plays a crucial role in important metabolic processes and helps H. pylori thrive in the acidic environment of the stomach.
  • Despite having low sequence identity with similar proteins, HpBPL shares significant structural similarities with Mycobacterium tuberculosis biotin protein ligase, indicating potential for developing inhibitors that could be effective against HpBPL.
View Article and Find Full Text PDF

Biotin (vitamin B) is a crucial cofactor for various metabolic processes and has significant applications in pharmaceuticals, cosmetics, and animal feed. , a well-studied Gram-positive bacterium, presents a promising host for biotin production due to its Generally Recognized as Safe (GRAS) status, robust genetic tractability, and capacity for metabolite secretion. This study focuses on the metabolic engineering of .

View Article and Find Full Text PDF
Article Synopsis
  • Propionyl CoA carboxylase (PCC) is a multimeric enzyme with α and β subunits that catalyzes the conversion of propionyl CoA to methyl malonyl CoA, with the BCCP domain playing a key role in this process.
  • A point mutation in either subunit can disrupt the enzyme's assembly and function, linking PCC to propionic acidemia, a genetic disorder.
  • Research on the PCC from Leishmania major (LmPCC) has focused on analyzing its BCCP domain using NMR, revealing important interaction residues and conformational changes related to biotinylation and the enzyme's function.
View Article and Find Full Text PDF

Soybean cyst nematode (SCN, ) is most effectively managed through planting resistant soybean cultivars, but the repeated use of the same resistance sources has led to a widespread emergence of virulent SCN populations that can overcome soybean resistance. Resistance to SCN HG type 0 (Race 3) in soybean cultivar Forrest is mediated by an epistatic interaction between the soybean resistance genes and . We previously developed two SCN inbred populations by mass-selecting SCN HG type 0 (Race 3) on susceptible and resistant recombinant inbred lines, derived from a cross between Forrest and the SCN-susceptible cultivar Essex, which differ for .

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!