This study investigates the suitability of the trimeric apolipoprotein (apo)AI(145-183) peptide that we recently described, to serve as a model to probe the relationship between apoAI structure and function. Three copies of the apoAI(145-183) unit, composed each of two amphipathic alpha-helical segments, were branched onto a covalent core matrix and the construct was recombined with phospholipids. A similar construct was made with the apoAI(102-140) peptide and used as a comparison with dimyristoylglycerophosphocholine (DMPC)-apoAI complexes. The DMPC-trimeric-apoAI(145-183) complexes had similar immunological reactivity with monoclonal antibodies directed against the 149-186 apoAI sequence (A44), suggesting that the A44 epitope is exposed similarly in both the synthetic peptide and the native apoAI complexes. The complexes generated with the trimeric-apoAI(145-183) bind specifically to HeLa cells with comparable affinity to the DMPC apoAI complexes; they are a good competitor for binding of apoAI to both HeLa cells and Fu5AH rat hepatoma cells; finally, these complexes promote cholesterol efflux from Fu5AH cells with an efficiency comparable with the apo AI/lipid complexes. To study LCAT activation by the trimeric apo AI(145-183) construct, complexes were prepared with dipalmitoylphosphatidylcholine (DPPC), cholesterol (C) and either the trimeric construct or apoAI. LCAT activation by the trimeric construct was much lower than by apo AI, possibly because the conformation of the trimeric 145-183 peptide in DPPC/C/peptide complexes does not mimic that of apoAI in the corresponding complexes. In comparison, the complexes generated with the multimeric apoAI(102-140) construct had a poor capacity to mimic the physico-chemical and biological properties of apoAI. The apoAI(102-140) construct had low affinity for lipid compared with the (145-183) construct. After association with lipids, it was a poor competitor of DMPC-apoAI complexes for cellular binding and had only limited capacity to promote cholesterol efflux. These results suggest trimeric constructs can serve as an appropriate models for apoAI, enabling further investigations and new experimental approaches to determine the structure-function relationship of apoAI.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0021-9150(98)00176-2 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!