Vaccination with naked DNA may be an alternative to conventional vaccines because it combines the efficacy of attenuated vaccines with the biological safety of inactivated vaccines. We recently showed that the vaccination with naked DNA coding for the immunorelevant glycoprotein D (gD) of pseudorabies virus (PRV) induced both antibody and cell-mediated immunity in pigs and provided protection against challenge infection. To determine whether the efficacy of the naked DNA vaccination against PRV could be improved, we compared three sets of variables. First, the efficacy of the naked DNA vaccine coding only for the immunorelevant gD was compared with a cocktail vaccine containing additional plasmids coding for two other immunorelevant glycoproteins, gB and gC. Second, the intramuscular route of vaccination was compared with the intradermal route. Third, the commonly used needle method of inoculation was compared with the needleless Pigjet injector method. Five groups of five pigs were vaccinated three times at 4-weeks intervals and challenged with the virulent NIA-3 strain of PRV 6 weeks after the last vaccination. Results showed that although the cocktail vaccine induced stronger cell-mediated immune responses than the vaccine containing only gD plasmid, both vaccines protected pigs equally well against challenge infection. Intradermal inoculation with a needle induced significantly stronger antibody and cell-mediated immune responses and better protection against challenge infection than intramuscular inoculation. Our data show that the route of administering DNA vaccines in pigs is important for an optimal induction of protective immunity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/s0165-2427(98)00186-x | DOI Listing |
Biosens Bioelectron
January 2025
Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China. Electronic address:
Isothermal amplification-based nucleic acid detection technologies have become rapid and efficient tools for molecular diagnostics. Sequence-specific monitoring methods are crucial for isothermal amplification, as they help identify the occurrence of extended primer dimers, which can lead to false positive results. Fluorescent aptamers are promising tools for real-time monitoring of isothermal amplification but are inherently limited by thermostability.
View Article and Find Full Text PDFACS Sens
January 2025
Department of Clinical Laboratory of Sir Run Run Shaw Hospital, College of Biosystems Engineering and Food Science, Zhejiang University School of Medicine, Hangzhou 310058, People's Republic of China.
The rapid, simple, and sensitive detection of nucleic acid biomarkers plays a significant role in clinical diagnosis. Herein, we develop a label-free and point-of-care approach for isothermal DNA detection through the trans-cleavage activity of CRISPR-Cas12 and the growth of gold nanomaterials in agarose gel. The presence of the target can activate CRISPR-Cas12a to cleave single-stranded DNA, thus modulating the length and number of DNA sequences that mediate the growth of gold nanoparticles (AuNPs) or gold nanorods (AuNRs).
View Article and Find Full Text PDFSci Rep
January 2025
Department of Plant Pathology, Faculty of Agrisciences, Stellenbosch University, Matieland, 7602, South Africa.
The soilborne pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is currently devastating banana production worldwide.
View Article and Find Full Text PDFMikrochim Acta
January 2025
Key Laboratory of Synthetic and Natural Functional Molecule, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.
A biosensor based on solid-state nanochannels of anodic aluminum oxide (AAO) membrane for both electrochemical and naked-eye detection of microRNA-31 (MiR-31) is proposed. For this purpose, MoS nanosheets, which possess different adsorption capabilities to single-stranded and double-stranded nucleic acids, are deposited onto the top surface of the AAO membrane. Moreover, multi-functional DNA nanostructure have been designed by linking a G-rich sequence for folding to a G-quadruplex at three vertices and a complementary sequence of MiR-31 at the other one vertex of a DNA tetrahedron.
View Article and Find Full Text PDFInt J Pharm
January 2025
College of Pharmacy, DaLi University, No. 2 Hongsheng Road, Dali, Yunnan Province 671003, China; Yunnan Key Laboratory of Screening and Research on Anti-pathogenic Plant Resources from Western Yunnan, Dali University, Xueren Road, Dali, Yunnan Province 671003, China; Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan Province 671003, China. Electronic address:
The intracellular trafficking of lipid nanoparticles (LNPs) leading to endosomal escape is critical for delivery efficiency. How components of LNP affect its intracellular trafficking and delivery efficiency remains unknown. Here, we developed a highly sensitive LNP/nucleic acid tracking platform based on streptavidin-biotin-DNA complex and high throughput imaging.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!