Postembryonic development of the nestlings in microgravity has revealed their capacity for orientation and stabilization of their position in space which called for developing the special devices. Under terrestrial laboratory conditions the facility for maintaining the nestlings aged up to 10 days has been developed and tested. The results of tests have indicated that despite the restricted volume of individual cages the nestlings can grow without significant variations from the norm as evidenced by the dynamics of nestlings body mass during 10 days and the amount of consumed food.

Download full-text PDF

Source

Publication Analysis

Top Keywords

nestlings
5
[development device
4
device japanese
4
japanese quail
4
quail nestlings
4
nestlings maintenance
4
maintenance microgravity]
4
microgravity] postembryonic
4
postembryonic development
4
development nestlings
4

Similar Publications

In 2022, an outbreak of H5N1 highly pathogenic avian influenza (HPAI) killed 60% of the largest breeding colony of Dalmatian pelicans (DPs) in the world at Mikri Prespa Lake (Greece), prompting a multidisciplinary study on HPAI and other pathogens. This study determines the antimicrobial resistance rates of cloacal enterococci and in DPs. Fifty-two blood and cloacal swab samples were collected from 31 nestlings (20 DP/11 great white pelicans) hatched after the H5N1 outbreak at the Prespa colony and 21 subadult/adult DPs captured at a spring migration stopover.

View Article and Find Full Text PDF

Radio-tracking urban breeding birds: The importance of native vegetation.

Ecol Appl

January 2025

Behavioral Ecology Research Group, Center for Natural Sciences, University of Pannonia, Veszprém, Hungary.

As urban areas continue to expand globally, a deeper understanding of the functioning of urban green spaces is crucial for maintaining habitats that effectively support wildlife within our cities. Cities typically harbor a wide variety of nonnative vegetation, providing limited support for insect populations. The resulting scarcity of arthropods has been increasingly linked to adverse effects at higher trophic levels, such as the reduced reproductive success of insectivorous birds in urban environments.

View Article and Find Full Text PDF

Assessment of species' vulnerability to climate change has been limited by mismatch between coarse macroclimate data and the fine scales at which species select habitat. Habitat mediates climate conditions, and fine-scale habitat features may permit species to exploit favourable microclimates, but habitat preferences can also constrain their ability to do so. We leveraged fine-resolution models of near-surface temperature and humidity in grasslands to understand how microclimates affect climatic exposure and demographics in a grassland bird community.

View Article and Find Full Text PDF

Dealing with infections is a daily challenge for wild animals. Empirical data show an increase in reactive oxygen species (ROS) production during immune response. This could have consequences on telomere length, the end parts of linear chromosomes, commonly used as proxy for good health and ageing.

View Article and Find Full Text PDF

Prenatal Corticosterone Impacts Nestling Condition and Immunity in Eastern Bluebirds.

J Exp Zool A Ecol Integr Physiol

January 2025

Department of Poultry Science, The University of Georgia, Athens, Georgia, USA.

Exposure of avian mothers to stressful conditions permanently alters offspring behavior and physiology. Yet, the effects of maternal stress on the development of offspring immunity in birds remain unclear, particularly in wild species. We injected Eastern bluebird (Sialia sialis) eggs with either a corticosterone or control solution, then measured the impacts on nestling morphology and two measures of immunity, bactericidal capacity and swelling responses to phytohemagglutinin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!