The present study was performed to determine whether plant polyphenols can protect human cells against radiation-induced DNA damage manifested as chromatid breaks. Since each chromatid contains a single continuous molecule of double stranded DNA, chromatid breaks represent unrepaired DNA strand breaks. The addition of green or black tea extracts, their polyphenols or curcumin to cultures of human skin fibroblasts or PHA-stimulated blood lymphocytes significantly reduced the frequencies of radiation-induced chromatid breaks. An exception to this general finding was that the green tea polyphenol, (-)epigallocatechin gallate, had no effect. The protective action of these plant polyphenols seems to result from their known antioxidant properties, particularly the scavaging of hydroxyl free radicals. Frequencies of chromatid breaks in cells arrested immediately after irradiation or 0.5 to 1.5 hours post-irradiation in the presence or absence of a DNA repair inhibitor, provide a measure of DNA damage. The results of the present study show that tea and other plant polyphenols can protect human cells against radiation-induced DNA damage.
Download full-text PDF |
Source |
---|
Indian J Occup Environ Med
December 2024
Viral Research and Diagnostic Laboratory (VRDL), Government Medical College, Patiala, Punjab, India.
Pesticides induce oxidative DNA damage and genotoxic effects such as DNA single-strand breaks (SSBs), double-strand breaks (DSBs), DNA adducts, chromosomal aberrations, and enhanced sister chromatid exchanges. Such DNA damage can be repaired by DNA repair mechanisms. In humans, single nucleotide polymorphisms (SNPs) are present in DNA repair genes involved in base excision repair (BER) (, and nucleotide excision repair (NER) (, , , and ), and double-strand break repair (DSBR) ( and ).
View Article and Find Full Text PDFDNA double strand breaks (DSBs) are widely considered the most cytotoxic DNA lesions occurring in cells because they physically disrupt the connectivity of the DNA double helix. Homologous recombination (HR) is a high-fidelity DSB repair pathway that copies the sequence spanning the DNA break from a homologous template, most commonly the sister chromatid. How both DNA ends, and the sister chromatid are held in close proximity during HR is unknown.
View Article and Find Full Text PDFFront Biosci (Landmark Ed)
January 2025
The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Hunan Normal University Health Science Center, 410013 Changsha, Hunan, China.
Background: α thalassemia/mental retardation syndrome X-linked (ATRX) serves as a part of the sucrose nonfermenting 2 (SNF2) chromatin-remodeling complex. In interphase, ATRX localizes to pericentromeric heterochromatin, contributing to DNA double-strand break repair, DNA replication, and telomere maintenance. During mitosis, most ATRX proteins are removed from chromosomal arms, leaving a pool near the centromere region in mammalian cells, which is critical for accurate chromosome congression and sister chromatid cohesion protection.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
RAD18 is a conserved eukaryotic E3 ubiquitin ligase that promotes genome stability through multiple pathways. One of these is gap-filling DNA synthesis at active replication forks and in post-replicative DNA. RAD18 also regulates homologous recombination (HR) repair of DNA breaks; however, the current literature describing the contribution of RAD18 to HR in mammalian systems has not reached a consensus.
View Article and Find Full Text PDFbioRxiv
January 2025
School of Biological Sciences and Center for Cell and Genome Sciences, University of Utah, Salt Lake City, UT 84112.
Meiotic chromosome segregation requires reciprocal exchanges between the parental chromosomes (homologs). Exchanges are formed via tightly-regulated repair of double-strand DNA breaks (DSBs). However, since repair intermediates are mostly quantified in fixed images, our understanding of the mechanisms that control the progression of repair remains limited.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!