Polycomb-group (PcG) proteins form large multimeric protein complexes that are involved in maintaining the transcriptionally repressive state of genes. Previously, we reported that RING1 interacts with vertebrate Polycomb (Pc) homologs and is associated with or is part of a human PcG complex. However, very little is known about the role of RING1 as a component of the PcG complex. Here we undertake a detailed characterization of RING1 protein-protein interactions. By using directed two-hybrid and in vitro protein-protein analyses, we demonstrate that RING1, besides interacting with the human Pc homolog HPC2, can also interact with itself and with the vertebrate PcG protein BMI1. Distinct domains in the RING1 protein are involved in the self-association and in the interaction with BMI1. Further, we find that the BMI1 protein can also interact with itself. To better understand the role of RING1 in regulating gene expression, we overexpressed the protein in mammalian cells and analyzed differences in gene expression levels. This analysis shows that overexpression of RING1 strongly represses En-2, a mammalian homolog of the well-characterized Drosophila PcG target gene engrailed. Furthermore, RING1 overexpression results in enhanced expression of the proto-oncogenes c-jun and c-fos. The changes in expression levels of these proto-oncogenes are accompanied by cellular transformation, as judged by anchorage-independent growth and the induction of tumors in athymic mice. Our data demonstrate that RING1 interacts with multiple human PcG proteins, indicating an important role for RING1 in the PcG complex. Further, deregulation of RING1 expression leads to oncogenic transformation by deregulation of the expression levels of certain oncogenes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC83865 | PMC |
http://dx.doi.org/10.1128/MCB.19.1.57 | DOI Listing |
Fitoterapia
January 2025
Department of Pharmaceutical Biology, German University in Cairo GUC, 11835 New Cairo City, Cairo, Egypt.
Genus Acacia comprises around 1500 species. They are widely used to treat inflammation as well as bacterial and fungal infections as they are enriched in phytochemicals, especially phenolics. The aim of this study was to evaluate the antibacterial activity of leaves' methanolic extracts of twelve Acacia species growing in Egypt against Vibrio parahaemolyticus, Salmonella enterica, Listeria monocytogens, Klebsiella pnemoniae, Bacillus aquimaris, Bacillus subtilis, and Escherichia coli.
View Article and Find Full Text PDFFront Cell Dev Biol
November 2024
Biological Research Centre, Institute of Genetics, Hungarian Research Network, Szeged, Hungary.
Early embryonic development is a complex process where undifferentiated cells lose their pluripotency and start to gastrulate. During gastrulation, three germ layers form, giving rise to different cell lineages and organs. This process is regulated by transcription factors and epigenetic regulators, including non-canonical polycomb repressive complex 1s (ncPRC1s).
View Article and Find Full Text PDFAutophagy
November 2024
Xinxiang Key Laboratory of Inflammation and Immunology, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
is widely used in the laboratory as an infection model for the research on pathogenesis and host defense against gram-positive intracellular bacteria. Macroautophagy (called simply "autophagy" hereafter), is important in the host defense against pathogens, such as bacteria, viruses, and parasites. BECN1 plays a pivotal role in the initiation of autophagy and accumulating evidence indicates that post-translational modifications of BECN1 provide multiple strategies for autophagy regulation.
View Article and Find Full Text PDFStructure
November 2024
Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462066, India. Electronic address:
PINK1 and Parkin mutations lead to the early onset of Parkinson's disease. PINK1-mediated phosphorylation of ubiquitin (Ub), ubiquitin-like protein (NEDD8), and ubiquitin-like (Ubl) domain of Parkin activate autoinhibited Parkin E3 ligase. The mechanism of various phospho-Ubls' specificity and conformational changes leading to Parkin activation remain elusive.
View Article and Find Full Text PDFNat Commun
September 2024
Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA.
Polycomb repressive complex 1 (PRC1) modifies chromatin through catalysis of histone H2A lysine 119 monoubiquitination (H2AK119ub1). RING1 and RNF2 interchangeably serve as the catalytic subunit within PRC1. Pathogenic missense variants in PRC1 core components reveal functions of these proteins that are obscured in knockout models.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!