Recently, the superficial musculoaponeurotic system (SMAS) was found to be a composite tissue comprising collagen, elastic fibers, and fat cells in an extracellular viscous matrix. Both SMAS and facial skin tissues exhibit viscoelastic properties, but SMAS tissue has delayed stress relaxation. As a consequence, SMAS is viewed as a firmer elastic foundation for the more viscous facial skin. In some patients, a slackening effect of SMAS tissue takes place over a period ranging from weeks to months after tightening. To determine the relative quantity of viscoelastic components and better understand their biomechanical behavior, a quantitative morphometric study of the elastic and collagen fibers in the SMAS and facial skin was conducted. Thirty-four SMAS preparations were taken from 17 patients during either primary face lift operations (12 women) or reoperative face lift procedures (4 women, 1 man), which were performed 4 to 9 months after the original surgery, to examine the elastin and collagen content. For comparison, preauricular skin was also gathered from these patients. The specimens were stained with Weigert's staining to identify elastin and collagen fibers. Using a computerized morphometric analysis, 100 fields of each SMAS and skin specimen were examined. According to our findings, the average percentage of elastin and collagen fibers in SMAS and facial skin was as follows: (1) the percentage of elastin fibers in the SMAS was 4.71 +/- 1.2 (standard error of mean +/- 0.0291); (2) the percentage of elastin fibers in the skin was 6.1 +/- 1.8 (standard error of mean +/- 0.0436); (3) The percentage of collagen fibers in the SMAS was 38.7 +/- 5.9 (standard error of mean +/- 0.1430); and (4) the percentage of collagen fibers in the skin was 48.47 +/- 6.96 (standard error of mean +/- 0.1688). A statistical significance of p < 0.0001 was demonstrated between the collagen and elastin groups. A different percentage of elastin and collagen fibers was found among the 17 patients and within each of them separately. Neither gender nor age differences were found regarding elastin and collagen fiber content. No statistical differences were demonstrated between specimen sources, i.e., whether the operations were primary or reoperative face lift procedures. Findings from previous studies indicate that the cheek has two viscoelastic layers, the skin and the SMAS. The proportional similarity in average percentages of elastin and collagen in SMAS and facial skin cannot explain the relatively delayed stress relaxation effect of the SMAS. Therefore, the fat cells that are found exclusively in the SMAS probably lend a certain degree of firmness to this layer and play a significant role in the long-term efficacy of SMAS surgery.

Download full-text PDF

Source
http://dx.doi.org/10.1097/00006534-199812000-00033DOI Listing

Publication Analysis

Top Keywords

elastin collagen
28
facial skin
24
collagen fibers
24
smas facial
20
smas
18
fibers smas
16
percentage elastin
16
standard error
16
error +/-
16
collagen
12

Similar Publications

Glycocalyx disruption, endothelial dysfunction and vascular remodeling as underlying mechanisms and treatment targets of chronic venous disease.

Int Angiol

December 2024

Vascular Surgery Research Laboratories, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA -

The glycocalyx is an essential structural and functional component of endothelial cells. Extensive hemodynamic changes cause endothelial glycocalyx disruption and vascular dysfunction, leading to multiple arterial and venous disorders. Chronic venous disease (CVD) is a common disorder of the lower extremities with major health and socio-economic implications, but complex pathophysiology.

View Article and Find Full Text PDF

Mechanical and functional characterisation of a 3D porous biomimetic extracellular matrix to study insulin secretion from pancreatic β-cell lines.

In Vitro Model

December 2024

Univ. Lille, Inserm, CHU Lille, Institut Pasteur Lille, U1167 - RID-AGE - Facteurs de Risque Et Déterminants Moléculaires Des Maladies Liées Au Vieillissement, F-59000 Lille, France.

Background: Extracellular matrix (ECM) is a three-dimensional (3D) structure found around cells in the tissues of many organisms. It is composed mainly of fibrous proteins, such as collagen and elastin, and adhesive glycoproteins, such as fibronectin and laminin-as well as proteoglycans, such as hyaluronic acid. The ECM performs several essential functions, including structural support of tissues, regulation of cell communication, adhesion, migration, and differentiation by providing biochemical and biomechanical cues to the cells.

View Article and Find Full Text PDF

Unveiling the therapeutic journey of snail mucus in diabetic wound care.

Naunyn Schmiedebergs Arch Pharmacol

January 2025

Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India.

A diabetic wound (DW) is an alteration in the highly orchestrated physiological sequence of wound healing especially, the inflammatory phase. These alterations result in the generation of oxidative stress and inflammation at the injury site. This further leads to the impairment in the angiogenesis, extracellular matrix, collagen deposition, and re-epithelialization.

View Article and Find Full Text PDF

Lysyl oxidase (LOX), a copper-containing secretory oxidase, plays a key role in the regulation of extracellular stiffness through cross-linking with collagen and elastin. Among the LOX family of enzymes, LOX-like 4 (LOXL4) exhibits pro-tumor and anti-tumor properties; therefore, the functional role of LOXL4 in tumor progression is still under investigation. Here, we first determined that transforming growth factor-β1 (TGF-β1) significantly decreased LOXL4 expression in human breast cancer MDA-MB-231 cells, which suggested that decreased LOXL4 may participate in tumor progression.

View Article and Find Full Text PDF

SN514 is a thermolysin-like enzyme under development as a debrider. Preclinical and non-clinical studies supported a first in human healthy volunteer study to predict the need for protection of periwound skin. Pharmacologic activity testing compared digestion of collagen, fibrin, and elastin with relevant enzymes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!